1.2 定义与命题同步训练
一.选择题(共8小题)
1.下列语句中,不是命题的是( )
A.若两角之和为90°,则这两个角互补
B.同角的余角相等
C.作线段的垂直平分线
D.相等的角是对顶角
2.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是( )
A.21 B.15 C.24 D.42
4.下列命题中,是假命题的是( )
A.对顶角相等
B.同旁内角互补
C.两点确定一条直线
D.角平分线上的点到这个角的两边的距离相等
5.下列命题错误的是( )
A.所有的实数都可用数轴上的点表示
B.等角的补角相等
C.无理数包括正无理数,0,负无理数
D.两点之间,线段最短
6.下列命题中,真命题是( )
A.相等的角是直角 B.不相交的两条线段平行
C.两直线平行,同位角互补 D.经过两点有且只有一条直线
7.下列命题中,是真命题的是( )
A.若a?b>0,则a>0,b>0 B.若a?b<0,则a<0,b<0
C.若a?b=0,则a=0,且b=0 D.若a?b=0,则a=0,或b=0
8.下列命题的逆命题一定成立的是( )
①对顶角相等; ②同位角相等,两直线平行;
③若a=b,则|a|=|b|; ④若x=3,则x2﹣3x=0.
A.①②③ B.①④ C.②④ D.②
二.填空题(共4小题)
9.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果 ,
那么 .
10.写出命题“如果a=b”,那么“3a=3b”的逆命题 .
11.命题“如果一个数是偶数,那么这个数能被2整除”的逆命题是 .
12.已知三条不同的直线a、b、c在同一平面内,下列四条命题:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命题的是 .(填写所有真命题的序号)
三.解答题(共2小题)
13.把命题改写成”如果…那么…”的形式.
(1)对顶角相等.
(2)两直线平行,同位角相等.
(3)等角的余角相等.
14.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.
①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.
题设(已知): .
结论(求证): .
证明: .
1.2 定义与命题同步训练
参考答案与试题解析
一.选择题(共8小题)
【分析】根据命题的定义作答.
【解答】解:根据命题的定义,可知A、B、D都是命题,而C属于作图语言,不是命题.
故选C.
【点评】本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于任何一个命题,都可以加上“是”或“不是”.注意,作图语言不是命题.21世纪教育网版权所有
2.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.
【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,
故选A.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理. 任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.21教育网
3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是( )
A.21 B.15 C.24 D.42
【分析】证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.
【解答】解:42是偶数,但42不是8的倍数.
故选:D.
【点评】本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.
【分析】根据对顶角的性质对A进行判断;根据平行线的性质对B进行判断;根据直线公理对C进行判断;根据角平分线性质对D进行判断.2·1·c·n·j·y
【解答】解:A、对顶角相等,所以A选项为真命题;
B、两直线平行,同旁内角互补,所以B选项为假命题;
C、两点确定一条直线,所以C选项为真命题;
D、角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.下列命题错误的是( )
A.所有的实数都可用数轴上的点表示
B.等角的补角相等
C.无理数包括正无理数,0,负无理数
D.两点之间,线段最短
【分析】根据实数与数轴上的点一一对应对A进行判断;
根据补角的定义对B进行判断;
根据无理数的分类对C进行判断;
根据线段公理对D进行判断.
【解答】解:A、所有的实数都可用数轴上的点表示,所以A选项正确;
B、等角的补角相等,所以B选项正确;
C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;
D、两点之间,线段最短,所以D选项正确.故选:C.
【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.www.21-cn-jy.com
6.下列命题中,真命题是( )
A.相等的角是直角 B.不相交的两条线段平行
C.两直线平行,同位角互补 D.经过两点有且只有一条直线
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【解答】解:A,不正确,因为相等的角也可能是锐角或钝角;
B,不正确,因为前提是在同一平面内;
C,不正确,因为两直线平行同位角相等;
D,正确,因为两点确定一条直线;故选D.
【点评】此题主要考查学生对命题的理解及运用能力.
7.下列命题中,是真命题的是( )
A.若a?b>0,则a>0,b>0 B.若a?b<0,则a<0,b<0
C.若a?b=0,则a=0,且b=0 D.若a?b=0,则a=0,或b=0
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法.
【解答】解:A、a?b>0可得a、b同号,可能同为正,也可能同为负,是假命题;
B、a?b<0可得a、b异号,所以错误,是假命题;
C、a?b=0可得a、b中必有一个字母的值为0,但不一定同时为零,是假命题;
D、若a?b=0,则a=0,或b=0,或二者同时为0,是真命题.故选D.
【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.
【分析】求出各命题的逆命题,判断真假即可.
【解答】解:①对顶角相等,逆命题为:相等的角为对顶角,错误;
②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,正确;
③若a=b,则|a|=|b|,逆命题为:若|a|=|b|,则a=b,错误;
④若x=3,则x2﹣3x=0,逆命题为:若x2﹣3x=0,则x=3,错误.故选D.
【点评】此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.
二.填空题(共4小题)
9.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果 两个角是对顶角 ,那么 这两个角相等 .21·cn·jy·com
【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.
【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,
命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.
故答案为:两个角是对顶角;这两个角相等.
【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.
10.写出命题“如果a=b”,那么“3a=3b”的逆命题 如果3a=3b,那么a=b .
【分析】先找出命题的题设和结论,再说出即可.
【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,
故答案为:如果3a=3b,那么a=b.
【点评】本题考查了命题与定理的应用,能理解命题的有关内容是解此题的关键.
11.命题“如果一个数是偶数,那么这个数能被2整除”的逆命题是 如果一个数能被2整除,那么这个数是偶数 .【来源:21·世纪·教育·网】
【分析】根据逆命题的定义把这个命题的题设和结论互换即可得出答案.
【解答】解:如果一个数是偶数,那么这个数能被2整除的逆命题是:
如果一个数能被2整除,那么这个数是偶数;
故答案为:如果一个数能被2整除,那么这个数是偶数.
【点评】此题考查了逆命题,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.21·世纪*教育网
12.(已知三条不同的直线a、b、c在同一平面内,下列四条命题:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命题的是 ①②④ .(填写所有真命题的序号)
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;
②如果b∥a,c∥a,那么b∥c是真命题,故②正确;
③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;
④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.
故答案为:①②④.
【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.
三.解答题(共2小题)
13.把命题改写成”如果…那么…”的形式.
(1)对顶角相等.
(2)两直线平行,同位角相等.
(3)等角的余角相等.
【分析】找出原命题的条件和结论即可得出答案.
【解答】解:(1)如果两个角是对顶角,那么这两个角相等;
(2)如果两直线平行,那么同位角相等;
(3)如果两个角同为等角的余角,那么这两个角相等.
14.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.
①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.
题设(已知): ①② .
结论(求证): ③ .
证明: 省略 .
【分析】可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.21cnjy.com
【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.