浙教版(2024)七年级上册1.4有理数的大小比较 同步课堂(含答案)

文档属性

名称 浙教版(2024)七年级上册1.4有理数的大小比较 同步课堂(含答案)
格式 zip
文件大小 201.3KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2025-09-18 14:32:05

文档简介

1.4有理数的大小比较
【知识点1】有理数大小比较 1
【题型1】有理数的大小比较 2
【题型2】利用数轴比较有理数大小 2
【题型3】利用绝对值比较有理数大小 3
【知识点1】有理数大小比较
(1)有理数的大小比较
比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
(2)有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小.
【规律方法】有理数大小比较的三种方法
1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
3.作差比较:
若a-b>0,则a>b;
若a-b<0,则a<b;
若a-b=0,则a=b.
1.(2025 浙江模拟)以下四个城市中某天上午9时气温最低的城市是(  )
杭州 温州 宁波 嘉兴
-2℃ 0℃ 1℃ -1℃
A.杭州 B.温州 C.宁波 D.嘉兴
2.(2025 定西一模)下列四个数中,绝对值最大的数是(  )
A.-2 B. C.0 D.
3.(2025 碑林区校级模拟)下列各数中,最小的是(  )
A.-1.5 B.0 C.3 D.1
【题型1】有理数的大小比较
【典型例题】下列各数:﹣4,﹣2.5,0,|﹣1|,其中比﹣3小的数是(  )
A.﹣2.5 B.|﹣1| C.﹣4 D.0
【举一反三1】设a=,b=,c=,下列不等关系中正确的是(  )
A.a<b<c B.b<c<a C.a<c<b D.c<b<a
【举一反三2】在数﹣0.75,﹣(﹣),0.3,﹣29%,﹣0.332,|﹣|中,最大的数是    ,最小的数是    .
【举一反三3】写出一个比﹣3大的负整数为    .
【举一反三4】若有理数a,b,c在数轴上的位置如图,其中0是原点,|b|=|c|.
(1)用“<”号把a,b,﹣a,﹣b连接起来;
(2)b+c的值是多少?
(3)判断a+b与a+c的符号.
【举一反三5】将﹣2.5,﹣(﹣1),0,2,﹣|﹣2|,+(﹣1.5),在数轴上表示出来,并用“>”把它们连接起来.
【题型2】利用数轴比较有理数大小
【典型例题】有理数m,n在数轴上的位置如图所示,则下列大小关系正确的是(  )
A.m>n>0 B.m>0>n C.n>m>0 D.n>0>m
【举一反三1】如图所示,根据有理数a,b,c在数轴上的位置,比较a,b,c的大小关系是(  )
A.a>b>c B.a>c>b C.b>c>a D.c>b>a
【举一反三2】已知有理数a在数轴上的对应点的位置如图所示,那么(  )
A.a>﹣1 B.a>﹣a C.a2>4 D.|a|>a
【举一反三3】三个有理数a、b、c在数轴上的位置如图所示,则a+b,a+c,b+c从大到小的顺序是   .(用“>”号连接)
【举一反三4】已知a,b,c,d满足a﹣1=﹣2,2b+3=1,a+c=1,b﹣d=﹣1,请在数轴上表示a,b,c,d,并按由小到大的顺序用“<”号连接起来.
【题型3】利用绝对值比较有理数大小
【典型例题】在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是(  )
A.﹣5 B.﹣0.9 C.0 D.﹣0.01
【举一反三1】2024年元旦当天河南省四个城市某个时刻的气温情况如下,其中气温最低的是(  )
A.安阳﹣3℃ B.新乡﹣5℃ C.郑州﹣2℃ D.信阳0℃
【举一反三2】比较大小:    ﹣(﹣1.2)(填“>”、“<”或“=”).
【举一反三3】在数轴上画出表示下列各数的点,并将这些数的绝对值用“<”连接起来.0,﹣3,2,﹣,5.
【举一反三4】利用绝对值比较下列各组数的大小.
(1)和;
(2)和.1.4有理数的大小比较
【知识点1】有理数大小比较 1
【题型1】有理数的大小比较 3
【题型2】利用数轴比较有理数大小 4
【题型3】利用绝对值比较有理数大小 6
【知识点1】有理数大小比较
(1)有理数的大小比较
比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
(2)有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小.
【规律方法】有理数大小比较的三种方法
1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
3.作差比较:
若a-b>0,则a>b;
若a-b<0,则a<b;
若a-b=0,则a=b.
1.(2025 浙江模拟)以下四个城市中某天上午9时气温最低的城市是(  )
杭州 温州 宁波 嘉兴
-2℃ 0℃ 1℃ -1℃
A.杭州 B.温州 C.宁波 D.嘉兴
【答案】A
【分析】根据有理数比较大小时,正数大于0,0大于负数;两个负数时,绝对值大的反而小,据此判断即可.
【解答】解:由题意得:-2℃<-1℃<0℃<1℃,
∴四个城市中某天上午9时气温最低的城市是杭州.
故选:A.
2.(2025 定西一模)下列四个数中,绝对值最大的数是(  )
A.-2 B. C.0 D.
【答案】A
【分析】首先求出每个数的绝对值各是多少,然后根据有理数大小比较的方法,判断出四个数中,绝对值最小的数是哪个即可.
【解答】解:|-2|=2,|0|=0,|-|=,
∵0<<2,
∴四个数中,绝对值最大的数是-2.
故选:A.
3.(2025 碑林区校级模拟)下列各数中,最小的是(  )
A.-1.5 B.0 C.3 D.1
【答案】A
【分析】利用有理数大小的比较方法:1、在数轴上表示的两个数,右边的总比左边的数大.2、正数都大于零,负数都小于零,正数大于负数.3、两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.按照从小到大的顺序排列找出结论即可.
【解答】解:∵-1.5<0<1<3,
∴最小的数是:-1.5.
故选:A.
【题型1】有理数的大小比较
【典型例题】下列各数:﹣4,﹣2.5,0,|﹣1|,其中比﹣3小的数是(  )
A.﹣2.5 B.|﹣1| C.﹣4 D.0
【答案】C
【解析】∵|﹣1|=1,
∴﹣4<﹣3<﹣2.5<0<|﹣1|,
∴比﹣3小的数是﹣4,
故选:C.
【举一反三1】设a=,b=,c=,下列不等关系中正确的是(  )
A.a<b<c B.b<c<a C.a<c<b D.c<b<a
【答案】A
【解析】∵1﹣=,1﹣=,1﹣=,而,
∴a<b<c.
故选:A.
【举一反三2】在数﹣0.75,﹣(﹣),0.3,﹣29%,﹣0.332,|﹣|中,最大的数是    ,最小的数是    .
【答案】|﹣|  ﹣0.75
【解析】﹣(﹣)=0.25,0.3,﹣29%=﹣0.29,|﹣|=0.8,
∵﹣0.75<﹣0.332<﹣0.29<﹣(﹣)<0.3<0.8,
∴﹣0.75<﹣0.332<﹣29%<﹣(﹣)<0.3<|﹣|,
∴最大的数是|﹣|,最小的数是﹣0.75.
故答案为:|﹣|,﹣0.75.
【举一反三3】写出一个比﹣3大的负整数为    .
【答案】﹣2(或﹣1)
【解析】比﹣3大的负整数为﹣2和﹣1.
故答案为:﹣2(或﹣1).
【举一反三4】若有理数a,b,c在数轴上的位置如图,其中0是原点,|b|=|c|.
(1)用“<”号把a,b,﹣a,﹣b连接起来;
(2)b+c的值是多少?
(3)判断a+b与a+c的符号.
【答案】解 (1)由数轴可得:a<b<0<c,且|a|>|b|=|c|,
则有:a<b<﹣b<﹣a;
(2)∵|b|=|c|,b<0,c>0,
∴b=﹣c,
∴b+c=0;
(3)由数轴可得:a<b<0<c,且|a|>|b|=|c|,
∴a+b<0,a+c<0,
即a+b的符号为负,a+c的符号为负.
【举一反三5】将﹣2.5,﹣(﹣1),0,2,﹣|﹣2|,+(﹣1.5),在数轴上表示出来,并用“>”把它们连接起来.
【答案】解 ﹣(﹣1)=1,﹣|﹣2|=﹣2,+(﹣1.5)=﹣1.5,
把各数表示在数轴上如图,
∴2>﹣(﹣1)>0>+(﹣1.5)>﹣|﹣2|>﹣2.5.
【题型2】利用数轴比较有理数大小
【典型例题】有理数m,n在数轴上的位置如图所示,则下列大小关系正确的是(  )
A.m>n>0 B.m>0>n C.n>m>0 D.n>0>m
【答案】B
【解析】由数轴上m、n的位置可知:m>0>n,
故选:B.
【举一反三1】如图所示,根据有理数a,b,c在数轴上的位置,比较a,b,c的大小关系是(  )
A.a>b>c B.a>c>b C.b>c>a D.c>b>a
【答案】A
【解析】由题意,得
c<b<a,
故选:A.
【举一反三2】已知有理数a在数轴上的对应点的位置如图所示,那么(  )
A.a>﹣1 B.a>﹣a C.a2>4 D.|a|>a
【答案】D
【解析】由数轴可知,﹣2<a<﹣1,故选项A不符合题意;
由﹣2<a<﹣1可得a<﹣a,故选项B不符合题意;
由﹣2<a<﹣1可得a2<4,故选项C不符合题意;
∵﹣2<a<﹣1,
∴1<|a|<2,
∴|a|>a,故选项D符合题意.
故选:D.
【举一反三3】三个有理数a、b、c在数轴上的位置如图所示,则a+b,a+c,b+c从大到小的顺序是   .(用“>”号连接)
【答案】a+b>a+c>b+c
【解析】由数轴可得:a>b>0>c,
∵a>b,
∴a+c>b+c,
∵b>c,
∴a+b>c+a,
∴a+b>a+c>b+c,
故答案为:a+b>a+c>b+c.
【举一反三4】已知a,b,c,d满足a﹣1=﹣2,2b+3=1,a+c=1,b﹣d=﹣1,请在数轴上表示a,b,c,d,并按由小到大的顺序用“<”号连接起来.
【答案】解 ∵a﹣1=﹣2,2b+3=1,
∴a=﹣1,b=2,
又∵a+c=1,b﹣d=﹣1,
∴c=1,d=3,
在数轴上表示如下:
∴a<c<b<d.
【题型3】利用绝对值比较有理数大小
【典型例题】在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是(  )
A.﹣5 B.﹣0.9 C.0 D.﹣0.01
【答案】D
【解析】∵|﹣5|>|﹣0.9|>|﹣0.01|,
∴﹣5<﹣0.9<﹣0.01,
∴在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是﹣0.01.
故选:D.
【举一反三1】2024年元旦当天河南省四个城市某个时刻的气温情况如下,其中气温最低的是(  )
A.安阳﹣3℃ B.新乡﹣5℃ C.郑州﹣2℃ D.信阳0℃
【答案】B
【解析】|﹣3|=3,|﹣5|=5,|﹣2|=2,
∵5>3>2,
∴﹣5<﹣3<﹣2<0,
∴气温最低的是新乡.
故选:B.
【举一反三2】比较大小:    ﹣(﹣1.2)(填“>”、“<”或“=”).
【答案】<
【解析】∵=﹣,﹣(﹣1.2)=1.2,
∴<﹣(﹣1.2).
故答案为:<.
【举一反三3】在数轴上画出表示下列各数的点,并将这些数的绝对值用“<”连接起来.0,﹣3,2,﹣,5.
【答案】解 这些数表示在数轴上为:
|0|=0,|﹣3|=3,|2|=2,,|5|=5,
∵0<<2<3<5,
∴|0|<<|2|<|﹣3|<|5|.
【举一反三4】利用绝对值比较下列各组数的大小.
(1)和;
(2)和.
【答案】解 (1)∵|﹣3|=3,|﹣2|=2,
∴3>2,
∴﹣3<﹣2;
(2)∵|﹣|=,|﹣|=,
∴<,
∴﹣>﹣.