【尖子生】浙教版2025-2026学年九年级上数学第2章 简单事件的概率 (含解析)

文档属性

名称 【尖子生】浙教版2025-2026学年九年级上数学第2章 简单事件的概率 (含解析)
格式 zip
文件大小 2.2MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2025-09-24 15:18:56

文档简介

中小学教育资源及组卷应用平台
【尖子生】浙教版2025-2026学年九年级上数学第2章 简单事件的概率
(解析版)
考试时间:150分钟 满分:150分
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6个点)抛掷n次,若n次抛掷所出现的向上一面的点数之和大于n2,则算过关;否则,不算过关.能过第二关的概率是(  ).
A. B. C. D.
【答案】A
【解析】 ∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于则算过关;
∴能过第二关的抛掷所出现的点数之和需要大于5,
列表得:
  1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
∵共有36种等可能的结果,能过第二关的有26种情况,
∴能过第二关的概率是:
故选:A.
2.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字(  )时有必胜的策略.
A.10 B.9 C.8 D.6
【答案】D
【解析】对于选项A:当甲写10时,乙可以写3、4、6、7、8、9,如果乙写7,则乙必胜,因为无论甲写3,4,6,8,9这五个数中的6(连带3)或8(连带4),乙可以写4或3,剩下2个数字;当甲写3或4时,乙可以写8(连带4)或6(连带3),剩下偶数个数字甲最后不能写,乙必胜;
对于选项B:当甲写9后,乙可以写2、4、5、6、7、8、10,如果乙写6,则乙必胜,因为剩下4、5、7、8、10这5个数中,无论甲写8(连带4)或10(连带5),乙可以写5或4;当甲写4或5时,乙可以写10(连带5)或8(连带4),甲最后不能写,乙必胜;
对于选项C:当甲写8时,乙可以写3、5、6、7、9、10,当乙写6(或10)时,甲就必须写10(或6),因为乙写6(或10)后,连带3(或5)也不能写了,这样才能保证剩下能写的数有偶数个,甲才可以获胜;
对于选项D: 甲先写6,由于6的约数有1,2,3,6,接下来乙可以写的数只有4、5、7、8、9、10,把这6个数分成三组:(4,7)、(5,8)、(9,10),当然也可(4,5)、(8,10)、(7,9)或(4,9)、(5,7)、(8,10)等等,只要组内两数大数不是小数的倍数即可,这样,乙写某组数中的某个数时,甲就写同组中的另一数,从而甲一定写最后一个,甲必获胜,
综上可知,只有甲先写6,才能必胜,
故答案为:D.
3.在如图所示的电路中,随机闭合开关、、中的两个,能让灯泡发光的概率是(  )
A. B. C. D.
【答案】B
【解析】根据题意列表如下.
开关一 开关二 S1 S2 S3
S1   S2,S1 S3,S1
S2 S1,S2   S3,S2
S3 S1,S3 S2,S3  
由上表可知共有6种等可能的结果,能让灯泡发光的结果有2种.
所以能让灯泡发光的概率是.
故答案为:B.
4.孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD、Dd、dd三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D的概率是(  )
A. B. C. D.
【答案】D
【解析】画图如下:
共有4种情况,而出现高茎的有3种结果,
∴子二代豌豆中含遗传因子D的概率是,
故答案为:D
5.在如图所示的图形中随机地撒一把豆子,计算落在,,三个区域中的豆子数的比.多次重复这个试验,把“在图形中随机撒豆子”作为试验,把“豆子落在中”记作事件,估计的概率(W)的值为(  )
A. B. C. D.
【答案】A
【解析】落在,,三个区域中的豆子数的比等于,,的面积比.
“豆子落在中”记作事件,估计的概率(W)的值,
故答案为:A.
6.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有(  )
A.15个 B.20个 C.10个 D.25个
【答案】A
【解析】设袋中白球有x个,
5根据题意,得:,
解得:x=15,
经检验:x=15是分式方程的解,
∴袋中白球有15个,
故答案为:A.
7.某科研小组为了考察某河流野生鱼的数量,从中捕捞200条,做上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼(  )
A.8000条 B.4000条 C.2000条 D.1000条
【答案】B
【解析】∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故答案为:B.
8. 在智力竞答节目中,某参赛选手答对最后两题单选题就能顺利通关, 两题均有四个选项, 此选手只能排除第 1 题的错误选项, 第 2 题完全不会, 他还有两次 “求助” 机会 (使用可去掉一个错误选项), 为提高通关概率, 他的求助使用策略为(  )
A.两次求助都用在第 1 题
B.两次求助都用在第 2 题
C.在第 1、第 2 题各用一次求助
D.无论如何使用通关概率都相同
【答案】A
【解析】∵ 选手可以排除第 1 题的错误选项,
∴解答第1题共有3种等可能的结果,其中正确的结果有一种,故作对的概率为.
解答第2题共有4种等可能的结果,其中正确的结果有一种,故作对的概率为.
若①两次求助都用在第1题,:
则第1题可以排除掉所有的错误答案,第2题不能排除,
故此时通关的概率为.
②两次求助都用在第2题,竖列表示第一题,横列表示第二题,如表所示:
  √ × ×
√ (√,√) (×,√) (×,√)
× (√,×) (×,×) (×,×)
共有6种等可能的结果,其中通关的结果只有一种,故通关的概率为.
③ 在第 1、第 2 题各用一次求助,竖列表示第一题,横列表示第二题,如表所示:
  √ ×
√ (√,√) (×,√)
× (×,√) (×,×)
× (×,√) (×,×)
共有6种等可能的结果,其中通关的结果只有一种,故通关的概率为.
∵,
∴两次求助都用在第1题,通关概率更高.
故答案为:A
9.两人玩一个有趣的拿球游戏,现有一堆球,两人轮流从中拿球,每人每次只能拿1个或者2个球,谁拿到最后一个球谁就获胜。已知这堆球的数量是在4到2025(包括4和2025)这些整数中随机选取一个数,则先取球的人有必胜策略的概率是(  )
A. B. C. D.
【答案】C
【解析】当m能被3整除时,后取球的人必胜
当m除以3有余数时,先取球的人必胜
m共有2022个值
且且
先取球必胜的m的个数为
故答案为:C.
10.某商场举办促销活动,负责人在一个不透明的袋子里装着个大小、质量相同的小球,其中个为红色、个为黄色、个为绿色,若要获奖需要一次性摸出个红球和个黄球,那么获奖的概率为(  )
A. B. C. D.
【答案】D
【解析】一次性摸出3个球,即不放回摸球3次,列树状图如下:
第2次摸球后共有7×8=56种等可能的结果,故第3次谋求后共有6×56=336种等可能的结果,其中"一次性摸出个红球和个黄球"的结果有2×4×5+4×2×5+4×5×2=120种,
故一次性摸出个红球和个黄球的概率为P=
故答案为:D.
二、填空题(本大题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.现有长分别为 的木条各一根, 从这 5 根木条中任取 3 根, 能构成三角形的概率是   .
【答案】0.3
【解析】从长度为1,2,3,4,5的木条中任取3根有如下10种等可能结果:
1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4,;2,3,5;2,4,5;3,4,5;
其中能构成三角形的有:3,4,5;2,4,5;2,3,4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是.
故答案为:0.3.
12.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于 ,则密码的位数至少需要   位.
【答案】4
【解析】 解:∵每个数位上的数都是0到9的自然数,
∴当密码为三位数时,一次就拨对密码的概率为:P=,
当密码为四位数时,一次就拨对密码的概率为:P=,
∴ 要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要4位.
故答案为:4.
13.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有   个白球.
【答案】9
【解析】在重复的300次实验中,摸到红球120次,则红球出现的概率是 ,利用样本估计总体方法,则在口袋中任意摸到一个红球的概率均是,设有白球个,则依据题意可得 ,解得: 个,则白球为9个。
14.为估计种子的发芽率,做了 10 次实验。每次种了 1000 颗种子,发芽的种子都在 950颗左右,预估该种子的发芽率为   。
【答案】95%
【解析】(950×10)÷(1000×10)×100%=95%,
故答案为:95%.
15.现有六张分别标有数字的卡片,其中标有数字的卡片在甲手中,标有数字的卡片在乙手中.两人各随机出一张卡片,甲出的卡片数字比乙大的概率是   .
【答案】
【解析】列表得
  1 4 5
2 < > >
3 < > >
6 < < <
共有9种等可能结果,其中甲牌面数大于乙牌面数的结果有4种
故填:.
16.2025年春节联欢晚会的主题是“巳巳如意,生生不息”,把这八个字分别写在八张不透明卡片的正面,这些卡片除了字不同处完全相同.将这八张卡片反面朝上洗匀,从中随机抽取一张,然后放回,再重新抽一张,则两次抽取的卡片上的字恰好都是“巳”的概率为   .
【答案】
【解析】根据题意,列表如下:
巳 巳 如 意 生 生 不 息
巳 巳,巳 巳,巳 如,巳 意,巳 生,巳 生,巳 不,巳 息,巳
巳 巳,巳 巳,巳 如,巳 意,巳 生,巳 生,巳 不,巳 息,巳
如 巳,如 巳,如 如,如 意,如 生,如 生,如 不,如 息,如
意 巳,意 巳,意 如,意 意,意 生,意 生,意 不,意 息,意
生 巳,生 巳,生 如,生 意,生 生,生 生,生 不,生 息,生
生 巳,生 巳,生 如,生 意,生 生,生 生,生 不,生 息,生
不 巳,不 巳,不 如,不 意,不 生,不 生,不 不,不 息,不
息 巳,息 巳,息 如,息 意,息 生,息 生,息 不,息 息,息
由表可知,共有64种可能的结果,其中两次抽取的卡片上的字恰好都是“巳”的概率为;
故答案为:.
三、解答题(本题有8小题,每题12分,共96分)
解答应写出文字说明,证明过程或推演步骤.
17.某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需向维修人员支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,收集并整理了100台这种机器在三年使用期内的维修次.数,整理得下表:
维修次数 8 9 10 11 12
频数(台数) 10 20 30 30 10
(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率.
(2)试以这100台机器维修费用的平均作为决策依据,说明购买1台该机器的同时应一次性额外购买10次还是11次维修服务
【答案】(1)解:“1台机器在三年使用期内维修次数不大于10”的概率为=0.6
(2)解:购买10次维修服务时,
某台机器使用期内维修次数 8 9 10 11 12
该台机器维修费用(元) 24000 24500 25000 30000 35000
此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300(元).
购买11次维修服务时,
某台机器使用期内维修次数 8 9 10 11 12
该台机器维修费用(元) 26000 26500 27000 27500 32500
此时这100台机器维修费用的平均数y2=
(26000×10+26500×20+27000×30+27500×30+32500×10)=27500(元).
∴27300<27500,
∴购买1台机器的同时选择一次性额外购买10次维修服务
18.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为 ,向左转和直行的频率均为 .
(1)假设平均每天通过该路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆各是多少辆;
(2)目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
【答案】(1)解:汽车在此左转的车辆数为5000× =1500(辆),(2分)在此右转的车辆数为5000× =2000(辆),(4分)在此直行的车辆数为5000× =1500(辆).
(2)解:根据频率估计概率的知识,得P(汽车向左转)= ,P(汽车向右转)= ,P(汽车直行)= .(9分)∴可调整绿灯亮的时间如下:左转绿灯亮的时间为90× =27(秒),右转绿灯亮的时间为90× =36(秒),直行绿灯亮的时间为90× =27(秒)
19.如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为 ,若存在,指出其中的一种平移方式;若不存在,请说明理?
【答案】(1)解:依题可得,
由表格可知构成点P的坐标共有16种等可能性的结果,其中(1,1),(1,2),(2,1),(2,2),这4种情况落在正方形ABCD面上,
∴ P点落在正方形ABCD面上(含正方形内部和边界)的概率P=.
答: P点落在正方形ABCD面上(含正方形内部和边界)的概率为.
(2)解:∵使点P落在正方形ABCD面上的概率为=>,
∴只能将正方形ABCD向上或向右整数个单位平移,且使点P落在正方形面上的数目为12,
∴存在这样的平移:先将正方形ABCD向上平移2个单位,再向右平移1个单位.
20.如图,电路图上有四个开关,,,和一个小灯泡,闭合开关或同时闭合开关,,都可使小灯泡发光.
(1)求任意闭合其中一个开关小灯泡发光的概率.
(2)求任意闭合其中两个开关小灯泡发光的概率.
【答案】(1)解:共有四个开关,,,,当闭合一个开关时,单独闭合时小灯不亮,单独闭合时小灯不亮,单独闭合时小灯不亮,单独闭合时小灯亮,
∴任意闭合其中一个开关小灯泡发光的概率是;
(2)解:闭合其中两个开关时,出现等可能得结果如图所示,
共有中等可能结果,其中小灯泡发光的是(A,D),(B,D),(C,D),(D,A),(D,B),(D,C),共有6种等可能的结果,
∴任意闭合其中两个开关小灯泡发光的概率是.
21.有一个转盘(材质均匀)如图,已知红色、黄色区域的圆心角度数分别为和,当指针刚好落在分界线时,重新转动.
(1)自由转动转盘一次,指针落在“红色区域”的概率为,分别求x和y的值.
(2)在(1)的条件下,若自由转动转盘两次,求“指针一次落在红色区域,另一次落在黄色区域”的概率.
【答案】(1)解:由题意可得:,


(2)解:如图,把黄色区域均分为圆心角都是的扇形,分别记作黄,黄,
列表如下:
第一次
第二次 红 黄1 黄2
红 红,红 红,黄1 红,黄2
黄1 黄1,红 黄1,黄1 黄1,黄2
黄2 黄2,红 黄2,黄1 黄2,黄2
由表格可知,共有种等可能的结果,其中“指针一次落在红色区域,另一次落在黄色区域”的结果有种,
(一次红色区域,一次黄色区域).
22.甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 1 2 3 4 5 6
出现次数 8 10 7 9 16 10
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
【答案】解:(1)出现向上点数为6的频率=;
(2)丙的说法不正确,
理由:(1)因为实验次数较多时,向上点数为6的频率接近于概率,但不说明概率就等一定等于频率;
(2)从概率角度来说,向上点数为6的概率是的意义是指平均每6次出现1次;
(3)用表格列出所有等可能性结果:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
共有36种等可能性结果,其中点数之和为3的倍数可能性结果有12个
∴P(点数之和为3的倍数)==.
23.王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 2 5 6 4 10 3
(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;
(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;
(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
【答案】解:(1)“3点朝上”的频率为:,
“5点朝上”的频率为:;
(2)王勇的说法是错误的
因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,
只有当实验次数足够大时,该事件发生的频率才能稳定在事件发生的概率附近,也才能用该事件发生的频率区估计其概率.
李明的说法也是错误的,因为事件的发生具有随机性,所以投掷300次,出现“6点朝上”的次数不一定是30次.
(3)列表:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
∵朝上的点数之和为3的倍数共有12个,
∴P(点数之和为3的倍数)= .
24.某批乒乓球的质量检验结果如下:
抽取的乒乓球数n 200 500 1000 1500 2000
优等品频数m 188 471 946 1426 1898
优等品频率 0.940 0.942 0.946 0.951 0.949
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?
【答案】解:(1)如图;
(2)这批乒乓球“优等品”概率的估计值是0.946;
(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,
∴从袋中摸出一个球是黄球的概率为:=;
②设从袋中取出了x个黑球,由题意得
≥,解得x≥8,
故至少取出了9个黑球.
21世纪教育网(www.21cnjy.com)
1 / 1中小学教育资源及组卷应用平台
【尖子生】浙教版2025-2026学年九年级上数学第2章 简单事件的概率
考试时间:150分钟 满分:150分
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6个点)抛掷n次,若n次抛掷所出现的向上一面的点数之和大于n2,则算过关;否则,不算过关.能过第二关的概率是(  ).
A. B. C. D.
2.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字(  )时有必胜的策略.
A.10 B.9 C.8 D.6
3.在如图所示的电路中,随机闭合开关、、中的两个,能让灯泡发光的概率是(  )
A. B. C. D.
4.孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD、Dd、dd三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D的概率是(  )
A. B. C. D.
5.在如图所示的图形中随机地撒一把豆子,计算落在,,三个区域中的豆子数的比.多次重复这个试验,把“在图形中随机撒豆子”作为试验,把“豆子落在中”记作事件,估计的概率(W)的值为(  )
A. B. C. D.
6.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有(  )
A.15个 B.20个 C.10个 D.25个
7.某科研小组为了考察某河流野生鱼的数量,从中捕捞200条,做上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼(  )
A.8000条 B.4000条 C.2000条 D.1000条
8. 在智力竞答节目中,某参赛选手答对最后两题单选题就能顺利通关, 两题均有四个选项, 此选手只能排除第 1 题的错误选项, 第 2 题完全不会, 他还有两次 “求助” 机会 (使用可去掉一个错误选项), 为提高通关概率, 他的求助使用策略为(  )
A.两次求助都用在第 1 题
B.两次求助都用在第 2 题
C.在第 1、第 2 题各用一次求助
D.无论如何使用通关概率都相同
9.两人玩一个有趣的拿球游戏,现有一堆球,两人轮流从中拿球,每人每次只能拿1个或者2个球,谁拿到最后一个球谁就获胜。已知这堆球的数量是在4到2025(包括4和2025)这些整数中随机选取一个数,则先取球的人有必胜策略的概率是(  )
A. B. C. D.
10.某商场举办促销活动,负责人在一个不透明的袋子里装着个大小、质量相同的小球,其中个为红色、个为黄色、个为绿色,若要获奖需要一次性摸出个红球和个黄球,那么获奖的概率为(  )
A. B. C. D.
二、填空题(本大题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.现有长分别为 的木条各一根, 从这 5 根木条中任取 3 根, 能构成三角形的概率是   .
12.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于 ,则密码的位数至少需要   位.
13.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有   个白球.
14.为估计种子的发芽率,做了 10 次实验。每次种了 1000 颗种子,发芽的种子都在 950颗左右,预估该种子的发芽率为   。
15.现有六张分别标有数字的卡片,其中标有数字的卡片在甲手中,标有数字的卡片在乙手中.两人各随机出一张卡片,甲出的卡片数字比乙大的概率是   .
16.2025年春节联欢晚会的主题是“巳巳如意,生生不息”,把这八个字分别写在八张不透明卡片的正面,这些卡片除了字不同处完全相同.将这八张卡片反面朝上洗匀,从中随机抽取一张,然后放回,再重新抽一张,则两次抽取的卡片上的字恰好都是“巳”的概率为   .
三、解答题(本题有8小题,每题12分,共96分)
解答应写出文字说明,证明过程或推演步骤.
17.某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需向维修人员支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,收集并整理了100台这种机器在三年使用期内的维修次.数,整理得下表:
维修次数 8 9 10 11 12
频数(台数) 10 20 30 30 10
(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率.
(2)试以这100台机器维修费用的平均作为决策依据,说明购买1台该机器的同时应一次性额外购买10次还是11次维修服务
18.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为 ,向左转和直行的频率均为 .
(1)假设平均每天通过该路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆各是多少辆;
(2)目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
19.如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为 ,若存在,指出其中的一种平移方式;若不存在,请说明理?
20.如图,电路图上有四个开关,,,和一个小灯泡,闭合开关或同时闭合开关,,都可使小灯泡发光.
(1)求任意闭合其中一个开关小灯泡发光的概率.
(2)求任意闭合其中两个开关小灯泡发光的概率.
21.有一个转盘(材质均匀)如图,已知红色、黄色区域的圆心角度数分别为和,当指针刚好落在分界线时,重新转动.
(1)自由转动转盘一次,指针落在“红色区域”的概率为,分别求x和y的值.
(2)在(1)的条件下,若自由转动转盘两次,求“指针一次落在红色区域,另一次落在黄色区域”的概率.
22.甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 1 2 3 4 5 6
出现次数 8 10 7 9 16 10
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
23.王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数 2 5 6 4 10 3
(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;
(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;
(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
24.某批乒乓球的质量检验结果如下:
抽取的乒乓球数n 200 500 1000 1500 2000
优等品频数m 188 471 946 1426 1898
优等品频率 0.940 0.942 0.946 0.951 0.949
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?
21世纪教育网(www.21cnjy.com)
1 / 1