中小学教育资源及组卷应用平台
第二章:简单事件的概率能力提升测试题
一.选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果2枚鸟卵全部成功孵化,那么2只雏鸟都是雄鸟的概率是( )
A. B. C. D.
2.在分别写有,1,2的三张卡片中,不放回地随机抽取两张,这两张卡片上的数恰好互为相反数的概率是( )
A. B. C. D.
3.一只不透明的袋子中,装有3个白球和若干个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到白球的概率为,则红球的个数为( )
A.1 B.2 C.3 D.4
4.在下列事件中,必然事件是( )
A.掷一次骰子,向上一面的点数是3 B.篮球队员在罚球线上投篮一次,未投中
C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180°
5.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用,,这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )
A. B. C. D.
6.现有甲、乙两个不透明盒子,其中甲盒装有分别写着d,t,l的三张声母卡片,乙盒装有分别写着a,e,i的三张韵母卡片(卡片除汉语拼音字母外,其余完全相同),若小明分别从甲、乙盒中随机各抽取一张卡片,则两张卡片刚好拼成“德”字读音的概率是( )
A. B. C. D.
7.某学习小组抛掷一枚质地不均匀的棋子,为了估计“正面朝上”的概率,将同学们获得的试验数据整理如下表:( )
则抛掷这枚棋子出现“正面朝上”的概率约为( )
A. B. C. D.
8.从1,2,3这三个数中随机抽取两个不同的数,分别记作和.若点的坐标记作,则点在双曲线上的概率是( )
A. B. C. D.
9.为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是( )
A. B. C. D.
10.班级里有位女同学和位男同学,每位同学的名字都被分别写在一张小纸条上,放入一个盒中搅匀,如果班长已经抽出了6张纸条,其中写有2位女同学和4位男同学的名字,他把这6张纸条放在桌上,闭上眼睛在盒中余下的纸条中再抽第7张,那么这张纸条上写的是男同学的名字的概率为( )
A. B. C. D.
二.填空题(本题共6小题,每题3分,共18分)
温馨提示:填空题必须是最简洁最正确的答案!
11.从三个数字中任选两个,则选出的两个数字之和是偶数的概率为___________
12.小明与小杰在玩卡牌游戏,已知小明手里有1,2,3,4四张牌,小杰手里有2,4,6,8四张牌,小明从小杰手里抽出一张牌,如果抽到小杰手中四张卡牌中的任意一张概率都相等,那么小明抽出的这张卡牌中,和自己手中某一张卡牌的数字一样的概率为_____________
13.如图是创新小组设计的一款小程序的界面示意图,程序规则为:每点击一次按钮,“”就从一个格子向左或向右随机移动到相邻的一个格子.当“”位于格子A时,小明连续点击两次按钮,“”回到格子A的概率是 .
14.从,1,2这三个数中任取两个数分别作为a,b的值,则关于x的一元二次方程有实数根的概率为____________
15.一个不透明的袋子中装有2个红球和3个黄球,每个球除颜色外都相同,任意摸出一个球,摸到红球的概率是___________
16.甲袋子中有2个红球、1个白球;乙袋子中有1个红球、1个白球.这些球除颜色外无其他差别.先从甲袋子中随机摸出1个球放入乙袋子,摇匀后,再从乙袋子中随机摸出1个球.
(1)从甲袋子中摸出的球是白球的概率是___________
(2)从两个袋子中摸出的球都是红球的概率是___________
三.解答题(共8题,共72分)
温馨提示:解答题应将必要的解答过程呈现出来!
17.(本题8分)如图是一个可以自由转动的转盘,转盘被等分成3个扇形,分别涂有“红、白、蓝”三种颜色,转盘指针固定转动转盘,等转盘停止转动后,观察指针所落区域的颜色若指针落在区域分界线上,则重新转动转盘.(1)任意转动转盘一次,指针落在红色区域的概率为______;
(2)任意转动转盘两次(第一次转动转盘,等转盘停止转动后,再第二次转动转盘),用画树状图或列表的方法求指针所落区域颜色不同的概率.
18.(本题8分)为打造活力校园,某校在大课间开展了丰富多彩的活动,现有4种体育类活动供学生选择:A.羽毛球,B.乒乓球,C.花样跳绳,D.踢毽子,每名学生只能选择其中一种体育活动.
(1)若小明在这4种体育活动中随机选择,则选中“乒乓球”的概率是______;
(2)请用画树状图或列表的方法,求小明和小聪随机选择选到同一种体育活动的概率.
19.(本题8分)为了弘扬社会主义核心价值观,学校决定组织“立鸿鹄之志,做有为少年”主题观影活动,建议同学们利用周末时间自主观看.现有共3部电影,甲、乙2位同学分别从中任意选择1部电影观看.
(1)甲同学选择A电影的概率为________;
(2)求甲、乙2位同学选择不同电影的概率.(请用画树状图或列表等方法说明理由)
20.(本题8分)学校拟举办庆祝“建国75周年”文艺汇演,每班选派一名志愿者,九年级一班的小明和小红都想参加,于是两人决定一起做“摸牌”游戏,获胜者参加.规则如下:将牌面数字分别为1,2,3的三张纸牌(除牌面数字外,其余都相同)背面朝上,洗匀后放在桌面上,小明先从中随机摸出一张,记下数字后放回并洗匀,小红再从中随机摸出一张.若两次摸到的数字之和大于4,则小明胜;若和小于4,则小红胜;若和等于4,则重复上述过程.
(1)小明从三张纸牌中随机摸出一张,摸到“1”的概率是______;
(2)请用列表或画树状图的方法,说明这个游戏对双方是否公平
21.(本题8分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).
参与度人数方式 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1
录播 4 16 12 8
直播 2 10 16 12
(1)你认为哪种教学方式学生的参与度更高?简要说明理由.
(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?
(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?
22.(本题10分)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.
表1:前测数据
测试分数x
控制班A 28 9 9 3 1
实验班B 25 10 8 2 1
表2:后测数据
测试分数x
控制班A 14 16 12 6 2
实验班B 6 8 11 18 3
(1)A,B两班的学生人数分别是多少?
(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.
(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.
23.(本题10分)为丰富学生课外锻炼活动,某学校增设了A(足球)、B(篮球)、C(体操)、D(田径)四个锻炼项目,每名学生只能选择其中的一项.为了解学生的选择情况,随机抽取部分学生进行调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据图中所提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生,并补全条形统计图;
(2)在扇形统计图中,求项目C对应的圆心角度数;
(3)已知选择项目D的学生是2名男生和2名女生,现从这4名学生中随机抽取2名参加比赛,用画树状图或列表法求抽到两名性别相同的学生的概率.
24.(本题12分)我市民文化艺术季启幕.某校带领甲、乙两个社团参观甲骨学发展史馆,领略殷商文明甲骨文化穿越千年的不朽魅力.活动结束后,两个社团进行了一次满分为10分的甲骨学发展史测试,并对所有学生的成绩进行了收集、整理、分析,信息如下:
①甲社团的成绩(单位:分)情况如下:
6,6,6,6,7,7,7,7,6,7,7,6,7,8,8,8,8,9,8,8,9,9,9,8,8,9,9,9,7,9,6,9,9,10,8,8,9,9,10,10.
②乙社团的平均成绩为(分).
③将两个社团的成绩绘制成如下不完整的统计图:
根据以上信息,解决下列问题:
(1)将条形统计图补充完整;
(2)成绩为8分的学生在_______社团的排名更靠前(填“甲”或“乙”);
(3)已知甲社团的满分学生中有两名女生,现从甲社团满分学生中随机抽取两人,参加甲骨学发展史宣讲活动.请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第二章:简单事件的概率能力提升测试题答案
一.选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.答案D:
解析:设2枚鸟卵全部成功孵化为A、B两只雏鸟,所有可能的结果为:AB两只雏鸟都是雄鸟,两只雏鸟都是雌鸟,A雏鸟是雄鸟B雏鸟是雌鸟,A雏鸟是雌鸟B雏鸟是雄鸟,共有4种等可能结果,其中2只雏鸟都是雄鸟有一种结果,则2只雏鸟都是雄鸟的概率为;
故选择:D.
2.答案: B
解析:由题意,列表如下:
共有6种等可能的结果,其中两张卡片上的数恰好互为相反数的情况有,两种,
∴;
故选择:B.
3.答案:B
解析:设红球有个,则袋中总球数为个,
∴摸到白球的概率为,
根据题意得:,
解得:,
因此,红球的个数为2个.
故选择:B.
4.答案:D
解析:A.掷一次骰子,向上一面的点数是3,是随机事件,不符合题意;
B.篮球队员在罚球线上投篮一次,未投中,是随机事件,不符合题意;
C.经过有交通信号灯的路口,遇到红灯,是随机事件,不符合题意;
D.任意画一个三角形,其内角和是,是必然事件,符合题意.
故选择:D.
5.答案:C
解析:依题意,用,,这三个数字随机组成一个无重复数字的三位数,可能结果有,
共六种可能,
只有是“平稳数”
∴恰好是“平稳数”的概率为
故选择:C.
6.答案:A
解析:将所有结果列表格如下:
声母 韵母 a e i
d da de di
t ta te ti
l la le li
所有可能的组合为9种,符合条件的情况仅1种,故两张卡片刚好拼成“德”字读音de的概率为.
故选择:A.
7.答案:B
解析:当抛掷次数较小时(如20次、60次等),频率波动较大(、等),当次数增加到500次及以上时,频率稳定在,所以抛掷这枚棋子出现“正面朝上”的概率约为.
故选择:B.
8.答案:A
解析:从1,2,3这三个数中随机抽取两个不同的数,点的坐标共有6种情况:,,,,,,并且它们出现的可能性相等.
点坐标在双曲线上有2种情况: ,.
所以,这个事件的概率为.
故选择:A.
9.答案:D
解析:设《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目分别为,
画树状图如下:
一共有16种等可能的结果,其中恰好抽到同一个阅读项目的结果有4种可能,
∴他们恰好抽到同一个阅读项目的概率是,
故选择:D.
10.答案:D
解析:总人数与剩余纸条数:班级共有女同学人,男同学人,
总人数为(人),
班长已抽出6张纸条,剩余纸条数为张.
∵已抽出的6张中有2位女同学和4位男同学,
因此剩余女同学为(人),剩余男同学为(人).
∴第7张纸条从剩余张中随机抽取,抽到男同学的概率为剩余男同学人数与剩余总人数的比值,即.
故选择:D.
二.填空题(本题共6小题,每题3分,共18分)
温馨提示:填空题必须是最简洁最正确的答案!
11.答案:
解析:画树状图如下:
由树状图可知,共有种等结果,其中选出的两个数字之和是偶数的结果有种,
∴选出的两个数字之和是偶数的概率为,
故答案为:.
12.答案:
解析:∵小杰一共有4种卡牌,其中有2张卡牌上的数字与小明手中卡片的数字相同,
∴小明抽出的这张卡牌中,和自己手中某一张卡牌的数字一样的概率为,
故答案为:.
13.答案:
解析:画出树状图如下:
由图知,所有可能的结果数为4,其中回到回到格子A的可能结果数为2,
则回到格子A的概率为;
故答案为:.
14.答案:
解析:∵关于x的一元二次方程有实数根,
∴,
∴且,
列表如下:
1 2
1
2
由表格可知,一共有6种等可能性的结果数,其中满足且的结果数有,,,共3种,
∴关于x的一元二次方程有实数根的概率为,
故答案为:.
15.答案:
解析:∵一个不透明的袋子中装有2个红球和3个黄球,每个球除颜色外都相同,
∴任意摸出一个球,摸到红球的概率是,
故答案为:.
16.答案:
解析:(1)由题意知,共有3种等可能的结果,其中从甲袋子中摸出的球是白球的结果有1种,
∴从甲袋子中摸出的球是白球的概率是.
故答案为:.
(2)画树状图如下:
共有9种等可能的结果,其中从两个袋子中摸出的球都是红球的结果有4种,
∴从两个袋子中摸出的球都是红球的概率为.
三.解答题(共8题,共72分)
温馨提示:解答题应将必要的解答过程呈现出来!
17.解析:由图可知,任意转动转盘一次,指针落在红色区域的概率为;
故答案为:;
(2)列表如下:
共有9种等可能结果,颜色不同的结果有6种,
.
18.解析:(1)∵有4种体育类活动供学生选择:A.羽毛球,B.乒乓球,C.花样跳绳,D.踢毽子,
∴选中“乒乓球”的概率是,
故答案为:;
(2)解:画树状图为:
由树状图可知一共有16种等可能性的结果数,其中小明和小聪随机选择选到同一种体育活动的结果数有4种,
∴小明和小聪随机选择选到同一种体育活动的概率是.
19.解析:(1)现有共3部电影,
甲同学选择A部电影的概率是.
故答案为:;
(2)用树状图或利用表格列出所有等可能的结果:
甲同学选择电影 乙同学选择电影
A B C
A
B
C
那么总结果有9种,甲、乙2位同学选择不同电影的结果有6种,
(甲、乙2位同学选择不同电影).
20.解析:(1)∵一共有3张牌,其中写有数字1的牌有1张,且每张牌被摸到的概率相同,
∴小明从三张纸牌中随机摸出一张,摸到“1”的概率是,
故答案为:;
(2)解:画树状图如下所示:
由树状图可知,一共有6种(和为4的不符合题意)等可能性的结果数,其中两次摸到的数字之和大于4的结果数有3种,两次摸到的数字之和小于4有3种,
∴小明获胜的概率为,小红获胜的概率为,
∴小明和小红获胜的概率相同,
∴该游戏对双方公平.
21.解析:(1)“直播”教学方式学生的参与度更高:
理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,
∴“直播”教学方式学生的参与度更高;
(2)12÷40=0.3=30%,
答:估计该学生的参与度在0.8及以上的概率是30%;
(3)“录播”总学生数为800×=200(人),
“直播”总学生数为800×=600(人),
∴“录播”参与度在0.4以下的学生数为200×=20(人),
“直播”参与度在0.4以下的学生数为600×=30(人),
∴参与度在0.4以下的学生共有20+30=50(人).
22.解析:(1)A班的人数:(人)
B班的人数:(人)
答:A,B两班的学生人数分别是50人,46人.
(2),
,
从平均数看,B班成绩好于A班成绩.
从中位数看,A班中位数在这一范围,B班中位数在这一范围,B班成绩好于A班成绩.
从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.
(3)前测结果中:
从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
从中位数看,两班前测中位数均在这一范围,后测A班中位数在这一范围,B班中位数在这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
从百分率看,A班15分以上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.
23.解析:(1)由图可知,本次被调查的学生共有:(人)
C项目人数为:(人), 完整条形统计图如下:
(2)C类对应的圆心角的度数为:.
(3)画出树状图如下所示:
由上图可得,共有12种等可能的结果,其中两名性别相同的学生的结果有4种,
∴恰好两名性别相同的学生的概率为:.
24.解析:(1)∵由统计数据可得:甲社团满分分有3人;乙社团分有人;补全图形如下:
;
(2)解:①甲社团的成绩(单位:分)情况如下:
6,6,6,6,6,6,6,7,7,7,7, 7,7,7, 7,8,8,8,8,8,8, 8,8,8,8,9,9,9,9,9,9, 9, 9,9,9, 9,9,10,10,10.
∴排在第,位的数据为,
∴甲社团的成绩的中位数为(分);
∵乙社团排在第,位的数据为,,
∴乙社团的成绩的中位数为(分);
∴成绩为8分的学生在乙社团的排名更靠前;
(3)解:记男生为甲,两个女生分别为乙,丙,
画树状图如下:
共有6种等可能的结果,其中抽取两人恰好是一名男生和一名女生的结果有4种,
∴两人恰好是一名男生和一名女生的概率为.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)