6.8 余角和补角 学案(无答案)

文档属性

名称 6.8 余角和补角 学案(无答案)
格式 zip
文件大小 15.1KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2016-09-30 15:36:52

图片预览

文档简介

6.8
余角和补角
学案
学习目标:
1、了解余角和补角的概念
2、理解等角的余角相等,等角的补角相等
3、了解角在解决实际问题中的一些简单应用。
学习重点和难点:
重点:余角和补角的概念和性质
难点:关于余角、补角的性质的应用常常需要说理,或综合运用代数知识。
学习过程:
一、新课引入
海塘大坝要修复加固,施工前要求先测大坝的倾斜角(即图中的∠1),坝底是石块堆积而成,量角器无法伸入大坝底部测量,聪明的你有什么简单的方法?
提出课题:6.8
余角和补角
二、新课
(一)余角和补角的概念
课本合作学习(让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励)
教师用多媒体演示∠1+∠2与Rt∠AOB重合,再移动一角,问∠1+∠2与Rt∠AOB相等吗?
同样∠α+∠β与∠AOB重合,再移动一角,问∠α+∠β与∠AOB相等吗?
通过上面的演示,我们看到有时两个角的和是90°,有时两个角的和是180°,也就是两个角之和正好成一直角,或两个角之和正好成一平角,在这种情况下,我们给出两个新的概念:
(1)互为余角定义:如果两个锐角的和是一个直角,那么这两个角互为余角.简称互余.用数学式子表示为:因为∠1+∠2=90°,所以∠1与∠2互余.反之,因为∠1与∠2互余,所以∠1+∠2=90°.
(2)互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角.简称互补.用数学式子表示为:因为∠1+∠2=180°,所以∠1与∠2互补.反之,因为∠1与∠2互补,所以∠1+∠2=180°.
问:∠α的余角与∠α的补角在大小上有什么关系?
判一判:
(1)如果两个角互补,那么这两个角中,一个是锐角,另一个是钝角;(

(2)如果一个角的余角和补角都存在,那么这个角的余角一定比这个角的补角小.(

(3)
∠A=25
。,
∠B=75。,那么

A与∠
B
互为余角.


(4)如果∠1+∠2+∠3=180°,
那么

1、∠
2、

3互为补角
。(

例1、若一个角的补角等于它的余角的4倍,求这个角的度数。
小结:用代数方法解决几何问题是常用的一种策略。
(二)余角和补角的性质
探索:余角和补角的性质(四人小组合作)
同角或等角的余角相等
同角或等角的补角相等
例2:如图,已知∠AOC=
∠BOD=Rt
∠。指出图中还有哪些角相等,
并说明理由
变式1:如图,A、O、B在同一直线上,
∠1=∠2,找出图中相等的角和互补的角。
三、解决课前提出的生活中的问题
四、课堂小结
五、布置作业
六、教学反思