(共15张PPT)
1.3 证明(1)
A
B
D
C
线段AB,CD哪条更长?
(1)当n=0时 n2-3n+7=
7
5
5
小明说:“对于自然数n,代数式n2-3n+7的值
都是素数”.
关于代数式n2-3n+7的值的猜测
(2)当n=1时 n2-3n+7=
(3)当n=2时 n2-3n+7=
(1)当n=0时 n2-3n+7=
7
5
5
:“对于自然数n,代数式n2-3n+7的值
都是素数”.
关于代数式n2-3n+7的值的猜测
(2)当n=1时 n2-3n+7=
(3)当n=2时 n2-3n+7=
命题
是真命题吗?
当n=6时 n2-3n+7=25
证明(1)
如图,AC,BD交于点E,AE=CE,BE=DE,
A
B
D
C
E
已知:
则
求证:
吗?请说明理由.
要判定一个命题是真命题,往往需要从
命题的条件出发,根据已知的定义、公理、
定理,一步一步推得结论成立,这样的推理
过程叫做证明.
(2)你还能得到哪些结论?
(1)
∠A=∠C,∠B=∠D,AB=CD,AB∥CD
(3)请选择其中一个结论,
向同桌口述证明过程.
△AEB ≌△CED
△AEB与△CED全等
如图,已知∠C=∠F,∠B=∠CDB.
求证:AC∥DF.
A
B
D
C
E
F
⌒
1
⌒
2
一个角的两边分别平行于另一个角的两边,
则这两个角相等 ”
命题 “
是真命题吗?
A
B
C
D
E
F
G
A
B
C
D
E
F
G
A
B
C
D
E
F
A
B
C
D
E
F
G
一个角的两边分别平行于另一个角的两边
则这两个角相等 ”
命题 “
且方向相同,
是真命题
吗?
.
证明
一个角的两边分别平行于另一个角的两边
则这两个角相等 ”
命题 “
且方向相同,
是真命题
.
证明
A
B
C
D
E
F
G
A
B
C
D
E
F
G
线段AB,CD哪条更长?
关于代数式n2-3n+7的值的猜测
感受了证明的必要
如图,AC,BD交于点E,AE=CE,BE=DE,
A
B
D
C
E
已知:
求证:
△AEB ≌△CED
理解了……
学会了……
一个角的两边分别平行于另一个角的两边
则这两个角相等.”
命题:“
且方向相同,
是真命题
.
证明
掌握了……
作业:
1、必做作业:详见学案
2、选做作业:详见学案