本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课 题 §2.1一元二次方程(二)
课 时教 学目 标 1.掌握因式分解法解一元二次方程的基本步骤.[来源:21世纪教育网2.会用因式分解法解一元二次方程.
21世纪教育网 教 学 设 想 【教学重点】用因式分解法解一元二次方程.【教学难点】例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点.
教 学 程 序 与 策 略
复习引入1、将下列各式分解因式:教师指出:把一个多项式化成几个整式的积的形式叫做因式分解.2、你能利用因式分解解下列方程吗?21世纪教育网请中等学生上来板演,其余学生写在练习本上,教师巡视.之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法。(板书课题)新课学习21世纪教育网归纳因式分解法解一元二次方程的步骤:教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书)若方程的右边不是零,则先移项,使方程的右边为零;将方程的左边分解因式;根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程。2、讲解例2.(1)解下列一元二次方程:教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用“或”,而不能用“且。(2)想一想:将第(1),(2),(3)题的解分别代人原方程的左、右两边,等式成立吗?
教 学 程 序 与 策 略
(3)归纳用因式分解法解的一元二次方程的基本类型:①先变形成一般形式,再因式分解:②移项后直接因式分解.在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式。讲解例3. 解方程在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范。3、补充例4 若一个数的平方等于这个数本身,你能求出这个数吗?首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0。三、巩固练习:课本第32页课内练习。四、体会和分享能说出你这节课的收获和体验让大家与你分享吗?先由学生自由发言,教师再投影演示:1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;2.用分解因式法解一元二次方程的一般步骤:(1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每一个因式为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0.4、用分解因式法解一元二次方程的注意点: 1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式.5、数学思想:整体思想和化归思想.五.课后作业1.书本作业题;2.作业本
教后反思录 21世纪教育网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课 题 2.1一元二次方程(1)
课 时教 学目 标21世纪教育网 经历一元二次方程概念的发生过程.理解一元二次方程的概念.[来源:21世纪教育网]了解一元二次方程的一般形式,会辨认一元二次方程的二次项系数、一次项系数和常数项.
教 学 设 想 本节教学重点是一元二次方程的概念,包括它的一般形式.例1第(4)题包含了代数式的变形和等式变形两个方面,计算容易产生差错,是本节教学的难点.
教 学 程 序 与 策略
一、合作学习,探究新知1、列出下列问题中关于未知数x的方程:(1)把面积为4平方米的一张纸分割成如图所示的正方形和长方形两个部分,求正方形的边长。设正方形的边长为x,可列出方程______________;(2)据国家统计局公布的数据,浙江省2001年全省实现生产总值6万亿元,2003年生产总值达9200亿元,求浙江省这两年实现生产总值的年平均增长率设年平均增长率为x,可列出方程______________;(3)从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿为x尺,可列出方程______________。学生自主探索,并互相交流,自己列出方程。21世纪教育网21世纪教育网2、观察上面所列方程,说出这些方程与一元一次方程的共同和不同之处.学生各抒己见,发表自己的发现:共同点:①它的左右两边都是整式,②只含一个未知数;不同点:未知数的最高次数是2。二、得出新知,运用强化1、教师指出符合上述特征的方程叫做一元二次方程.板书课题及一元二次方程的定义并指出:能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。2、判断下列方程是否是一元二次方程:3、判断未知数的值x=-1,x=0,x=2是不是方程的根。通过此题的求解向学生说明:一元二次方程的解(或根)的概念与一元一次方程的解(或根)的概念类似,但解的个数不同。4. 一元二次方程概念的延伸提问:一元二次方程很多吗 你有办法一下写出所有的一元二次方程吗 引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式ax2+bx+c=0(a≠0)1)提问a=0时方程还是一无二次方程吗 为什么 (如果a=0、b≠0就成了一元一次方程了)。2)讲解方程中ax2、bx、c各项的名称及a、b的系数名称.3)强调:一元二次方程的一般形式中 “=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。5、强化概念例1 把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数、常数项:
在本例中教师要讲清方程变形时,哪些属于代数式变形,运用了什么法则;哪些属于等式变形,依据什么性质。并板书示范解题过程。2.练习:做课内练习第2、3题
3、提高练习:作业题5、7。三、课堂小结 (1)本节课主要介绍了一类很重要的方程—一元二次方程(方程两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程); (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0),并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现,但二次项必须存在。特别注意的是“=”的右边必须整理成0;21世纪教育网 (3)要很熟练地说出随便一个一元二次方程中二次项、一次项、常数项:二次项系数、一次项系数.四、布置作业
教后反思录
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网