首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
浙教版(2024)
八年级上册(2024)
第3章 一元一次不等式
3.4 一元一次不等式组
3.4一元一次不等式组 练习
文档属性
名称
3.4一元一次不等式组 练习
格式
doc
文件大小
836.0KB
资源类型
试卷
版本资源
浙教版
科目
数学
更新时间
2017-10-26 12:23:50
点击下载
图片预览
1
2
3
4
文档简介
21世纪教育网 –中小学教育资源及组卷应用平台
一元一次不等式组
班级:___________姓名:___________得分:__________
一、选择题
1、下列各式中不是一元一次不等式组的是( )
A. y<- B. 3x-5>0 C. a-1<0 D. x-5>021世纪教育网版权所有
y>-5 4x+2<0 b+2>0 x+2≤0
2. 不等式组 x-2<0 的解集在数轴上表示正确的是( )
x+1≥0
A. ( http: / / www.21cnjy.com / )B. ( http: / / www.21cnjy.com / )C. ( http: / / www.21cnjy.com / )D. ( http: / / www.21cnjy.com / )
3.关于x的不等式组 x<a-2 只有4个整数解,则a的取值范围是( )
x+1>0
A.5≤a≤6 B.5≤a<6 C.5<a≤6 D.5<a<6
4. 下列不等式组中,无解的是( )
A. x-2<0 B. x-2<0 C. x-2>0 D. x-2>0
x+4<0 x+4>0 x+4<0 x+4>021·cn·jy·com
5. 设x为整数,且满足不等式-2x+3<4x-1和3x-2<-x+3,则x等于( )
A.0 B.1 C.2 D.3
二、填空题
1、列不等式组:2x与3的和不小于4,且x与6的差是负数___________________。
2. 不等式组 x-1>0 的解集是______.
6-2x>0
3. 如果关于x的不等式组 3x-a≥0 的整数解仅有1,2,那么适合这个不等式组的整数a,b
2x-b≤0
组成的有序数对(a,b)共有______个.
4. 若不等式组 2x-a<1 的解集为-1<x<1,则a=______,b=______.
x-2b>3
5. 关于x的不等式组 >x-3只有4个整数解,则a的取值范围是______.
三、解答题
1. 已知关于x的不等式组的整数解 6x+a>5x-3.5共有2个,则a的取值范围是______.
≤
2. 解不等式组 x+2(x-1)<7,并把它的解集在数轴上表示出来.
3x-1>2x-3
四、应用题
某公司计划生产甲、乙两种产品共20件,其 ( http: / / www.21cnjy.com )总产值w(万元)满足:1150
( http: / / www.21cnjy.com / )
参考答案
一、选择题
1、C
【解析】由几个含有相同未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组。C选项有两个未知数,所以不是一元一次不等式组,所以选C【来源:21·世纪·教育·网】
2、B
【解析】在 x-2<0中
x+1≥0
由x-2<0得:x<2
由x+1≥0得:x≥-1
则不等式组的解集为2>x≥-1.故选B
3、C
【解析】不等式组 x<a-2
x+1>0
解得-1<x<a-2,∵不等式组只有4个整数解,
即,整数解为:0,1,2,3,
∴可得,3<a-2≤4,
得,5<a≤6.
故选C.
4.C
【解析】解出不等式组的解集分别是:
A选项, x<2其解集为x<-4;
x<-4
B选项, x<2 其解集为-4<x<2;
x>-4
C选项, x>2 无解;
x<-4
D选项, x>2 其解集为x>2
x>-4
根据口诀可判断C中无解.
5.B
【解析】解不等式-2x+3<4x-1得:x>
解不等式3x-2<-x+3,得:x<
则x的范围是:
则选项中满足条件的只有B.
故选B.
二、填空题
1、 2x+3≥4
x-6<0
【解析】根据题意列出不等式组 2x+3≥4
x-6<0
2、1<x<3
【解析】不等式组可化为: x>1
x<3
在数轴上可表示为: ( http: / / www.21cnjy.com / )
因此不等式的解集为:1<x<3.
3、6
【解析】 3x-a≥0 ①
2x-b≤0 ②
∵解不等式①得:x≥
解不等式②得:x≤
∴不等式组的解集为: ≤x≤
∵关于x的不等式组 3x-a≥0 的整数解仅有1,2,
2x-b≤0
∴<3, 0<
4 ≤b<6 ,0
即b的值是4,5,a的值是1,2,3
即(4,1),(5,1),(4,2),(5,2),(4,3),(5,3)
故答案为:6.
4.1,-2
【解析】 2x-a<1 ①
x-2b>3 ②
由①解得:x<
由②解得:x>2b+3,
∴不等式解集为:2b+3<x<
可得2b+3=-1, =1
则a=1,b=-2.
故答案为:1;-2
5. -5
【解析】 >x-3 ①
由①得:x<21,
由②得:x>2-3a, ( http: / / www.21cnjy.com )
∴不等式组的解集为:2-3a<x<21,
∵不等式组只有四个整数解,即:20,19,18,17,
∴16≤2-3a<17,21教育网
-5
故答案为-5
三、解答题
1.【解析】 6x+a>5x-3.5 ①
≤ ②
∵解不等式①得:x>-a-3.5,
解不等式②得:x≤
∴不等式组的解集为:-a-3.5<x≤
∵关于x的不等式组的整数解 6x+a>5x-3.5共有2个,
≤
∴-2≤-a-3.5<-1,
∴-2.5<a≤-1,5,
故答案为:-2.5<a≤-1.5.
2. 【解析】由①得:x<3.
由②得:x>-2.(4分)
在数轴表示得:
∴不等式组的解集为:-2<x<3.
( http: / / www.21cnjy.com / )
四、应用题
【解析】解:设计划生产甲种产品x件,则生产乙种产品(20-x)件,
根据题意,得 45x+75(20-x)>115021cnjy.com
45x+75(20-x)<1200
解得10
∵x为整数,∴x=11,
此时,20-x=9(件),即公司应安排生产甲种产品11件,乙种产品9件。
( http: / / www.21cnjy.com / )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)
点击下载
同课章节目录
第1章 三角形的初步知识
1.1 认识三角形
1.2 定义与命题
1.3 证明
1.4 全等三角形
1.5 三角形全等的判定
1.6 尺规作图
第2章 特殊三角形
2.1 图形的轴对称
2.2 等腰三角形
2.3 等腰三角形的性质定理
2.4 等腰三角形的判定定理
2.5 逆命题和逆定理
2.6 直角三角形
2.7 探索勾股定理
2.8 直角三角形全等的判定
第3章 一元一次不等式
3.1 认识不等式
3.2 不等式的基本性质
3.3 一元一次不等式
3.4 一元一次不等式组
第4章 图形与坐标
4.1 探索确定位置的方法
4.2 平面直角坐标系
4.3 坐标平面内图形的轴对称和平移
第5章 一次函数
5.1 常量与变量
5.2 函数
5.3 一次函数
5.4 一次函数的图象
5.5 一次函数的简单应用
点击下载
VIP下载