专题:有理数的乘方
重难点易错点解析
题一:
题面:计算(1) (2) ?(?3) (3)10
金题精讲
题一:
题面:若|a?2|+(b+1)2=0,求的值.
题二:
题面:若3x=a,3y=b,则32x?y=( )
A. B.a2b C.2ab D.
题三:
题面:将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次的折痕保持平行,连续对折三次,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折次,可以得到 条折痕.21教育网
题四:
题面:已知一组数为:1, …按此规律用代数式表示第n个数为
思维拓展
题面:n为正整数,(?1)2n+(?1)2n+1的值为 .
课后练习详解
重难点易错点解析
题一:
答案:1、?9;2、?81;3、100000.
详解:一般来说,此类问题分清指数、底数,运用法则判断出幂的符号即可。
1、表示的相反数,应为:= ?33= ?9;
2、?(?3)表示求(?3)的相反数,应为:?(?3)= ?(?3)(?3)(?3)(?3)= ?81;
3、指5个10相乘,应为= 100000.
金题精讲
题一:
答案:1.
详解:∵|a-2|+(b+1)2=0,∴a=2,b= ?1,则原式=
题二:
答案:A.
详解:一般来说,此类问题应把题目中的未知幂转化成已知幂求值。因为3x=a,所以(3x)2=a2,即32x=a221世纪教育网版权所有
则32x-y==
故选A.
题三:
答案:15,.
详解:
对折次数
纸张的块数
折痕数
1
2=2
1=2
2
4=2
3=2
3
8=2
7=2
4
16=2
15=2
…
…
…
2
2
一般来说,此类问题应联系有理数的乘方知识。对折一次即2的一次方,对折两次,即2的2次方。对折次数,纸张的块数与折痕数如上表. 通过对上表的分析,答案为15,.
题四:
答案:.
详解:1=,,…,所以第n个数就应该是.
思维拓展
答案:0.
详解:?1的偶次幂是1,?1的奇次幂是?1.(?1)2n+(?1)2n+1=1+(?1)=0.