第2章 特殊三角形期末专题复习学案(2)

文档属性

名称 第2章 特殊三角形期末专题复习学案(2)
格式 zip
文件大小 1.2MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2017-12-08 22:01:26

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
八上数学期末专题复习--角平分线和中垂线
◆考点一:角平分线的性质:
典例精讲:
例1.(1)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为   21·cn·jy·com
(2)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中全等三角形的对数为(  )
A.1 B.2 C.3 D.421*cnjy*com
(3)如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.
变式训练:
1.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是(  )【来源:21·世纪·教育·网】
A.P是∠A与∠B两角平分线的交点
B.P为∠A的角平分线与AB的垂直平分线的交点
C.P为AC、AB两边上的高的交点
D.P为AC、AB两边的垂直平分线的交点
2.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为(  )【来源:21cnj*y.co*m】
A.1 B.2 C.3 D.4
3.如图,在△ABC中,点D在边BC上,若∠BAD=∠CAD,AB=6,AC=3,S△ABD=3,则S△ACD=(  )
A.3 B.6 C. D.
◆考点二:中垂线的性质:
典例精讲:
例2.(1)如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为________
(2)如图,AB=AC,∠BAC=110°,AB的垂直平分线交BC于点D,那么∠ADC=(  )
A.50° B.60° C.70° D.80°
(3)如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为(  )21·世纪*教育网
A.3cm B.6cm C.12cm D.16cm
变式训练:
1.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=   【出处:21教育名师】
2.如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为   
3.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是(  )
A.BD平分∠ABC B.△BCD的周长等于AB+BC
C.AD=BD=BC D.点D是线段AC的中点
◆考点三:中垂线的性质的综合应用:
典例精讲:
例3.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是   
(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
变式训练:
已知:如图,△ABC是等腰三角形,AB=AC,现要在AB边上确定一点D,使点D到点A的距离与点D到点C的距离相等.
(1)请你按照要求,在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹) .
(2)简单说明你作图的依据.
(3)在(1)的条件下,若等腰三角形ABC的周长为21,底边BC=5,请求出△BCD的周长.
◆考点四:翻折问题:
典例精讲:
例4.(1)如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为   
(2)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是(  )
A.△EBD是等腰三角形,EB=ED B.折叠后∠ABE和∠CBD一定相等
C.折叠后得到的图形是轴对称图形 D.△EBA和△EDC一定是全等三角形
变式训练:
1.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是(  )21教育网
A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE
2.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为   2·1·c·n·j·y
3.如图,等边△ABC的边长为10cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC的外部,则阴影部分图形的周长为   cm.
巩固提升:
1.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB=8,△MBC的周长是14,则BC的长为   21世纪教育网版权所有
2.如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为   www-2-1-cnjy-com
3.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为   
4.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,则线段AC21cnjy.com
5.如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为   21教育名师原创作品
6.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是   (请将所有正确结论的序号都填上).
7.如图,△ABC的周长为22cm,∠ABC,∠ACB的平分线交于O,OD⊥BC于D,且OD=3cm,则△ABC的面积为   cm2.www.21-cn-jy.com
8.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为   cm.
9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=   2-1-c-n-j-y
10.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A=    时,ED恰为AB的中垂线.【版权所有:21教育】
11.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为(  )
A.48° B.36° C.30° D.24°
12.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为(   )
A.15° B.22.5° C.30° D.45°
13.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是(  )
A.10cm B.12cm C.15cm D.17cm21*cnjy*com
14.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为(  )
A.30° B.40° C.50° D.60°
15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE的度数是(  )
A.20° B.30° C.40° D.70°
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)21世纪教育网 –中小学教育资源及组卷应用平台
八上数学期末专题复习--角平分线和中垂线答案
◆考点一:角平分线的性质:
典例精讲:例1.
(1)解析:根据垂线段最短,PQ⊥OM时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,
∴PQ=PA=3.
故答案为:3.
(2)解析:∵OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∠1=∠2,
在△AOP与△BOP中,

∴△AOP≌△BOP(SAS),
∴AP=BP,
在△EOP与△FOP中,

∴△EOP≌△FOP(AAS),
在Rt△AOP与Rt△BOP中,

∴Rt△AOP≌Rt△BOP(HL),
∴图中有3对全等三角形.
故选:C.
(3)解:如图,点P即为所求.
(1)作∠AOB 的平分线OC;
(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,
则P点即为所求.
变式训练:
1.解析:∵点P到∠A的两边的距离相等,
∴点P在∠A的角平分线上;
又∵PA=PB,
∴点P在线段AB的垂直平分线上.
即P为∠A的角平分线与AB的垂直平分线的交点.
故选B.
2.解析:∵DE垂直平分AB,
∴DA=DB,
∴∠B=∠DAB,
∵AD平分∠CAB,
∴∠CAD=∠DAB,
∵∠C=90°,
∴3∠CAD=90°,
∴∠CAD=30°,
∵AD平分∠CAB,DE⊥AB,CD⊥AC,
∴CD=DE=BD,
∵BC=3,
∴CD=DE=1,
故选A.
3.解析:过D作DP⊥AC交AC的延长线于P,DQ⊥AB于Q,
∵∠BAD=∠CAD,∴DP=DQ,
∵S△ABD=AB DQ= DQ=3,
∴DQ=1,∴DP=1,
∴S△ACD= AC DP=,
故选:C.
◆考点二:中垂线的性质:
典例精讲:例2.
(1)解析:连接AM,AN,
∵在△ABC中,AB=AC,∠A=120°,
∴∠C=∠B=30°,
∵AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,
∴AN=CN,AM=BM,
∴∠CAN=∠C=30°,∠BAM=∠B=30°,
∴∠ANC=∠AMN=60°,
∴△AMN是等边三角形,
∴AM=AN=MN,
∴BM=MN=CN,
∵BC=8cm,
∴MN=cm.
故答案为: cm.
(2).解析:根据题意,在△ABC中,AB=AC,∠BAC=110°,
∴∠B=35°,
又AB的垂直平分线交BC于点D,
∴∠BAD=∠B=35°,
在△BAD中,∠ADC=∠B+∠BAD=70°,
∴∠ADC=70°.
故答案选C.
(3)解:∵DE是AC的垂直平分线,
∴AD=DC,AE=CE=AC,
∵△ABC的周长为19cm,△ABD的周长为13cm,
∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,
∴AC=6cm,∴AE=3cm,
故选A.
变式训练:
1.解析:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,
∵AD是∠BOC的平分线,
∴DE=DF,
∵DP是BC的垂直平分线,
∴BD=CD,
在Rt△DEB和Rt△DFC中,

∴Rt△DEB≌Rt△DFC(HL).
∴∠BDE=∠CDF,
∴∠BDC=∠EDF,
∵∠DEB=∠DFC=90°,
∴∠EAF+∠EDF=180゜,
∵∠BAC=84°,
∴∠BDC=∠EDF=96°,
故答案为:96°.
2.解析:∵DE是AC的垂直平分线,
∴AD=DC,
∵AB=7,
∴AD+BD=7,
∴CD+BD=7,
∵BC=6,
∴△BCD的周长是CD+BD+BC=7+6=13,
故答案为:13
3.解析:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠C==72°,
∵AB的垂直平分线是DE,
∴AD=BD,
∴∠ABD=∠A=36°,
∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,
∴BD平分∠ABC,故A正确;
∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;
∵∠DBC=36°,∠C=72°,
∴∠BDC=180°﹣∠DBC﹣∠C=72°,
∴∠BDC=∠C,
∴BD=BC,
∴AD=BD=BC,故C正确;
∵BD>CD,
∴AD>CD,
∴点D不是线段AC的中点,故D错误.
故选D.
◆考点三:中垂线的性质的综合应用:
典例精讲:例3
解析:(1)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=40°,
∵MN是AB的垂直平分线,
∴AN=BN,
∴∠ABN=∠A=40°,
∴∠ANB=100°,
∴∠MNA=50°;
故答案为50°.
(2)①∵AN=BN,
∴BN+CN=AN+CN=AC,
∵AB=AC=8cm,
∴BN+CN=8cm,
∵△NBC的周长是14cm.
∴BC=14﹣8=6cm.
②∵A、B关于直线MN对称,
∴连接AC与MN的交点即为所求的P点,此时P和N重合,
即△BNC的周长就是△PBC的周长最小值,
∴△PBC的周长最小值为14cm.
变式训练:
解析:(1)如图
(2)作图依据_两点确定一条直线;到线段两个端点距离相等的点在线段的垂直平分线上.
(3)解: ∵DE垂直平分AC
∴AD=CD
又∵等腰三角形ABC的周长为21,底边BC=5
∴ 等腰三角形ABC的腰AB=(21-5)2=8
∴ △BCD的周长=BC+CD+BD=BC+AD+BD=BC+AB=5+8=13
◆考点四:翻折问题:
典例精讲:例4.
(1)解析:如图,∵四边形ABCD为矩形,
∴∠D=90°,DC=AB=6;
由勾股定理得:
AC2=AD2+DC2,而AD=8,
∴AC=10;由题意得:
∠AFE=∠B=90°,
AF=AB=6;设EF=EB,
∴CF=10﹣6=4,CE=;
由勾股定理得:
解得:,
∴CE=5,
故答案为5.
(2)解:∵ABCD为矩形
∴∠A=∠C,AB=CD
∵∠AEB=∠CED
∴△AEB≌△CED(故D选项正确)
∴BE=DE(故A选项正确)
∠ABE=∠CDE(故B选项不正确)
∵△EBA≌△EDC,△EBD是等腰三角形
∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)
故选:B.
变式训练:
1.解析:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
所以,结论正确的是D选项.故选D.
2.解:设BN=x,由折叠的性质可得DN=AN=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△BND中,x2+32=(9﹣x)2,
解得x=4.
故线段BN的长为4.
故答案为:4.
3.解析:将△ADE沿直线DE折叠,点A落在点A′处,
所以AD=A′D,AE=A′E.
则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,
=BC+BD+CE+AD+AE,
=BC+AB+AC,
=30cm.
故答案为:30.
巩固提升:
1.解析:∵MN是AB的垂直平分线,
∴AM=BM,
∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,
∵AB=8,△MBC的周长是14,
∴BC=14﹣8=6.
故答案为:6.
2.解析:如图,∵∠BAC=140°,
∴∠B+∠C=180°﹣140°=40°;
由题意得:∠B=∠DAB(设为α),∠C=∠EAC(设为β),
∴∠ADE=2α,∠AED=2β,
∴∠DAE=180°﹣2(α+β)=180°﹣80°=100°,
故答案为100°.
3.解析:∵AB+AC=7,D是AB上一点,点D在BC的垂直平分线上,
∴BD=CD,
∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC=7.
故答案为:7.
4.解析:∵∠ACB=60°,∠B=90°,
∴∠A=30°,
∵DE是斜边AC的中垂线,
∴DA=DC,
∴∠ACD=∠A=30°,
∴∠DCB=30°,
∴BC=BD=2,
∴AC=2BC=4.
5.解析:∵BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,
∴BE=EC,BC=2BD=8;
又∵△ABE的周长为14,
∴AB+AE+BE=AB+AE+EC=AB+AC=14;
∴△ABC的周长是:AB+AC+BC=14+8=22;
故答案是:22.
6.解析:①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,
∵AD=AD,PR=PS,
∴AR=AS,∴①正确;
②∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴②正确;
③在Rt△BRP和Rt△QSP中,只有PR=PS,
不满足三角形全等的条件,故③错误;
④如图,连接RS,与AP交于点D.
在△ARD和△ASD中,

所以△ARD≌△ASD.
∴RD=SD,∠ADR=∠ADS=90°.
所以AP垂直平分RS,故④正确.
故答案为:①②④.
7.解析:如图,过点O作OE⊥AB于E,OF⊥AC于F,
∵∠ABC、∠ACB的平分线,OD⊥BC,
∴OD=OE,OD=OF,
∴OD=OE=OF=3cm,
∴△ABC的面积=(AB+BC+AC)×3=33cm2;
故答案为:33.
8.解析:DE=CD,BE=BC=7cm,
∴AE=AB﹣BE=3cm,
∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.
9.解析:连接BD
∵DE垂直平分AB
∴AD=BD
∴∠DBA=∠A=30°
∴∠CBD=30°
∴BD=2CD=4
∴AC=CD+AD=CD+BD=2+4=6.
答案6.
10.解析:当∠A=30°时,ED恰为AB的中垂线,
理由是:∵BE平分∠CDA,
∴∠CBE=∠DBE,
∵∠C=90°,∠A=30°,
∴∠CBA=60°,
∴∠EBD=∠CBE=∠CBA=30°,
即∠A=∠EBA,
∴BE=AE,
∵ED⊥AB,
∴BD=AD,
即当∠A=30°时,ED恰为AB的中垂线,
故答案30°.
11.解析:∵BD平分∠ABC,
∴∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣60°﹣24°×2=72°,
∵BC的中垂线交BC于点E,
∴BF=CF,
∴∠FCB=24°,
∴∠ACF=72°﹣24°=48°,
故选:A.
12.解析:过E作EM∥BC,交AD于N,
∵AC=4,AE=2,
∴EC=2=AE,
∴AM=BM=2,
∴AM=AE,
∵AD是BC边上的中线,△ABC是等边三角形,
∴AD⊥BC,
∵EM∥BC,
∴AD⊥EM,
∵AM=AE,
∴E和M关于AD对称,
连接CM交AD于F,连接EF,
则此时EF+CF的值最小,
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC,
∵AM=BM,
∴∠ECF=∠ACB=30°,
故选C.
13.解析:∵AB的垂直平分AB,
∴AE=BE,BD=AD,
∵AE=3cm,△ADC的周长为9cm,
∴△ABC的周长是9+2×3=15cm,
故选:C.
14.解析:∵ED是AC的垂直平分线,
∴AE=CE
∴∠EAC=∠C,
又∵∠B=90°,∠BAE=10°,
∴∠AEB=80°,
又∵∠AEB=∠EAC+∠C=2∠C,
∴∠C=40°.
故选:B.
15.解:如图,由题意得:△ADE≌△BDE,
∴∠A=∠ABE=40°;
∵AB=AC,
∴∠ABC=∠C=,
∴∠CBE=30°,
故选B.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)