21世纪教育网 –中小学教育资源及组卷应用平台
1.3二次根式的运算性质(1)同步练习
班级__________姓名____________总分___________
本节应掌握和应用的知识点
1.最简二次根式:满足下列两个条件的二次 ( http: / / www.21cnjy.com )根式,叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式.www.21-cn-jy.com
2.二次根式的运算性质及应用
( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
二次根式化简的结果应为最简二次根式
基础知识和能力拓展精练
一.选择题(共10小题)
1.下列式子为最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
2.下列说法中正确的是( )
A.8的立方根是±2
B. ( http: / / www.21cnjy.com )是一个最简二次根式
C.函数y= ( http: / / www.21cnjy.com )的自变量x的取值范围是x>1
D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称
3.下列计算结果正确的是( )
A.2+ ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com )=2 C.(﹣2a2)3=﹣6a6 D.(a+1)2=a2+1
4.如果ab>0,a+b<0,那么下面各式:① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),② ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )=1,③ ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )=﹣b,其中正确的是( )21cnjy.com
A.①② B.②③ C.①③ D.①②③
5.计算 ( http: / / www.21cnjy.com )的结果为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C.3 D.5
6.已知m= ( http: / / www.21cnjy.com ),则有( )
A.5<m<6 B.4<m<5 C.﹣5<m<﹣4 D.﹣6<m<﹣5
7.若 ( http: / / www.21cnjy.com )=a, ( http: / / www.21cnjy.com )=b,则 ( http: / / www.21cnjy.com )的值用a、b可以表示为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
8.下列各式中正确的是( )
A.2﹣2=﹣4 B.(33)2=35 C. ( http: / / www.21cnjy.com ) D.x8÷x4=x2
9.计算( ( http: / / www.21cnjy.com )﹣1)( ( http: / / www.21cnjy.com )+1)2的结果是( )
A. ( http: / / www.21cnjy.com )+1 B.3( ( http: / / www.21cnjy.com )﹣1) C.1 D.﹣1
10.已知 ( http: / / www.21cnjy.com ),则 ( http: / / www.21cnjy.com )=( )
A.y ( http: / / www.21cnjy.com ) B.﹣y ( http: / / www.21cnjy.com ) C.y ( http: / / www.21cnjy.com ) D.﹣y ( http: / / www.21cnjy.com )
二.填空题(共6小题)
11.二次根式 ( http: / / www.21cnjy.com )中最简二次根式是 .
12.把二次根式 ( http: / / www.21cnjy.com )化成最简二次根式为 .
13.计算: ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= .
14.计算:2﹣1+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= .
15.计算: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= .
16.已知﹣1<a<0,化简 ( http: / / www.21cnjy.com )得 .
三.解答题(共8小题)
17.把下列各式化成最简二次根式:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ).
18. ( http: / / www.21cnjy.com ).
19.计算:
(1) ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com );
(2)4 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com );
(3)6 ( http: / / www.21cnjy.com )×(﹣3 ( http: / / www.21cnjy.com ));
(4)3 ( http: / / www.21cnjy.com )×2 ( http: / / www.21cnjy.com ).
20.已知A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.
21.已知 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),且x为偶数,求(1+x) ( http: / / www.21cnjy.com )的值.
22.已知: ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),且x是偶数,求:代数式(x+2) ( http: / / www.21cnjy.com )的值.
23.已知 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )是相等的最简二次根式.
(1)求a,b的值;
(2)求 ( http: / / www.21cnjy.com )的值.
24.(1)探索:先观察并计算下列各式,在空白处填上“>”、“<”或“=”,并完成后面的问题.
( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )…
用 ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )表示上述规律为: ;
(2)利用(1)中的结论,求 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )的值
(3)设x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com )试用含x,y的式子表示 ( http: / / www.21cnjy.com ).
答案与试题解析
一.选择题
1.下列式子为最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
B、被开方数含能开得尽方的因数或因式,故B不符合题意;
C、被开方数含能开得尽方的因数或因式,故C不符合题意;
D、被开方数含分母,故D不符合题意;
故选:A.
2.下列说法中正确的是( )
A.8的立方根是±2
B. ( http: / / www.21cnjy.com )是一个最简二次根式
C.函数y= ( http: / / www.21cnjy.com )的自变量x的取值范围是x>1
D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称
【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.
解:A、8的立方根是2,故A不符合题意;
B、 ( http: / / www.21cnjy.com )不是最简二次根式,故B不符合题意;
C、函数y= ( http: / / www.21cnjy.com )的自变量x的取值范围是x≠1,故C不符合题意;
D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D符合题意;
故选:D.
3.下列计算结果正确的是( )
A.2+ ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com )=2 C.(﹣2a2)3=﹣6a6 D.(a+1)2=a2+1
【分析】依次根据合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.
解:A、2+ ( http: / / www.21cnjy.com )不是同类二次根式,所以不能合并,所以A错误;
B、 ( http: / / www.21cnjy.com )=2,所以B正确;
C、(﹣2a2)3=﹣8a6≠﹣6a6,所以C错误;
D、(a+1)2=a2+2a+1≠a2+1,所以D错误.
故选B
4.如果ab>0,a+b<0,那么下面各式:① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),② ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )=1,③ ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )=﹣b,其中正确的是( )21世纪教育网版权所有
A.①② B.②③ C.①③ D.①②③
【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.
解:∵ab>0,a+b<0,
∴a<0,b<0
① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),被开方数应≥0,a,b不能做被开方数,(故①错误),
② ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )=1, ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=1,(故②正确),
③ ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )=﹣b, ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )=﹣b,(故③正确).
故选:B.
5.计算 ( http: / / www.21cnjy.com )的结果为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C.3 D.5
【分析】原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.
解:原式=2+1=3.
故选C
6.已知m= ( http: / / www.21cnjy.com ),则有( )
A.5<m<6 B.4<m<5 C.﹣5<m<﹣4 D.﹣6<m<﹣5
【分析】求出m的值,求出2 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com ))的范围5<m<6,即可得出选项.
解:m=(﹣ ( http: / / www.21cnjy.com ))×(﹣2 ( http: / / www.21cnjy.com )),
= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )×3 ( http: / / www.21cnjy.com ),
=2 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
∵ ( http: / / www.21cnjy.com )< ( http: / / www.21cnjy.com )< ( http: / / www.21cnjy.com ),
∴5< ( http: / / www.21cnjy.com )<6,
即5<m<6,
故选A.
7.若 ( http: / / www.21cnjy.com )=a, ( http: / / www.21cnjy.com )=b,则 ( http: / / www.21cnjy.com )的值用a、b可以表示为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
【分析】 ( http: / / www.21cnjy.com ),化简即可.
解: ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
故选C.
8.下列各式中正确的是( )
A.2﹣2=﹣4 B.(33)2=35 C. ( http: / / www.21cnjy.com ) D.x8÷x4=x2
【分析】根据同底数幂的除法,幂的乘方与积的乘方,二次根式的乘除法,负整数指数幂的法则分别计算,再判断.21·cn·jy·com
解:A、2﹣2= ( http: / / www.21cnjy.com ),故错误;
B、(33)2=36,故错误;
C、正确;
D、x8÷x4=x8﹣4=x4,故错误.
故选C.
9.计算( ( http: / / www.21cnjy.com )﹣1)( ( http: / / www.21cnjy.com )+1)2的结果是( )
A. ( http: / / www.21cnjy.com )+1 B.3( ( http: / / www.21cnjy.com )﹣1) C.1 D.﹣1
【分析】先将原式化成( ( http: / / www.21cnjy.com )﹣1)( ( http: / / www.21cnjy.com )+1)( ( http: / / www.21cnjy.com )+1)的形式,然后先用平方差公式计算.
解:原式=[( ( http: / / www.21cnjy.com ))2﹣12]( ( http: / / www.21cnjy.com )+1)= ( http: / / www.21cnjy.com )+1.故选A.
10.已知 ( http: / / www.21cnjy.com ),则 ( http: / / www.21cnjy.com )=( )
A.y ( http: / / www.21cnjy.com ) B.﹣y ( http: / / www.21cnjy.com ) C.y ( http: / / www.21cnjy.com ) D.﹣y ( http: / / www.21cnjy.com )
【分析】因为 ( http: / / www.21cnjy.com ),所以x<0;可得 ( http: / / www.21cnjy.com )中,y<0,根据二次根式的定义解答即可.
解:∵ ( http: / / www.21cnjy.com ),
∴x<0,又 ( http: / / www.21cnjy.com )成立,
则y<0,
则 ( http: / / www.21cnjy.com )=﹣y ( http: / / www.21cnjy.com ).
故选B.
二.填空题(共6小题)
11.二次根式 ( http: / / www.21cnjy.com )中最简二次根式是 ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com ) .
【分析】根据最简二次根式的性质,进行解答:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式.【来源:21·世纪·教育·网】
解:第一个根式不是最简二次根式,因为被开方数的因式不是整数,
第二个根式不是最简二次根式,因为被开方数含有开的尽方的因数,
第三个根式为最简二次根式,
第四个根式为最简二次根式,
第五个根式不是最简二次根式,因为被开方数含有开的尽方的因数和因式,
第六个根式为最简二次根式,
故答案为 ( http: / / www.21cnjy.com )
12.把二次根式 ( http: / / www.21cnjy.com )化成最简二次根式为 ( http: / / www.21cnjy.com ) .
【分析】本题需先确定x的符号,然后将被二次根式的被开方数的分母有理化,化简求解.
解:∵ ( http: / / www.21cnjy.com )>0,且y>0;∴x>0;
因此x ( http: / / www.21cnjy.com )=x× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
13.计算: ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) .
【分析】根据二次根式的乘法法则进行计算即可.
解: ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com );
故答案为: ( http: / / www.21cnjy.com ).
14.计算:2﹣1+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) .
【分析】首先计算负指数次幂以及二次根式的除法,然后进行加法运算即可求解.
解:原式= ( http: / / www.21cnjy.com )+2
= ( http: / / www.21cnjy.com ).
故答案是: ( http: / / www.21cnjy.com ).
15.计算: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= 12 .
【分析】直接利用二次根式乘除运算法则化简求出答案.
解: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=3 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )
=3 ( http: / / www.21cnjy.com )
=12.
故答案为:12.
16.已知﹣1<a<0,化简 ( http: / / www.21cnjy.com )得 ﹣ ( http: / / www.21cnjy.com ) .
【分析】先根据完全平方公式,将两个被开方数转化为完全平方式,然后根据已知条件,判断出a+ ( http: / / www.21cnjy.com ),a﹣ ( http: / / www.21cnjy.com )的符号,再开方求解即可.2·1·c·n·j·y
解:∵﹣1<a<0,
∴a+ ( http: / / www.21cnjy.com )<0,a﹣ ( http: / / www.21cnjy.com )>0;
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=(a﹣ ( http: / / www.21cnjy.com ))[﹣(a+ ( http: / / www.21cnjy.com ))]
=﹣ ( http: / / www.21cnjy.com ).
三.解答题(共8小题)
17.把下列各式化成最简二次根式:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ).
【分析】本题需先将二次根式分母有理化,分子的被开方数中,能开方的也要移到根号外.
解:(1)原式= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com );
(2)原式=﹣ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
18. ( http: / / www.21cnjy.com ).
【分析】首先把乘除法混合运算转化成乘法运算,然后进行乘法运算即可.
解:原式=3 ( http: / / www.21cnjy.com )×(﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ))×2 ( http: / / www.21cnjy.com )
=﹣3× ( http: / / www.21cnjy.com )×2× ( http: / / www.21cnjy.com )
=﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=﹣ ( http: / / www.21cnjy.com )×10
=﹣ ( http: / / www.21cnjy.com ).
19.计算:
(1) ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com );
(2)4 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com );
(3)6 ( http: / / www.21cnjy.com )×(﹣3 ( http: / / www.21cnjy.com ));
(4)3 ( http: / / www.21cnjy.com )×2 ( http: / / www.21cnjy.com ).
【分析】(1)直接利用二次根式乘法运算法则计算得出答案;
(2)直接利用二次根式乘法运算法则计算得出答案;
(3)直接利用二次根式乘法运算法则计算得出答案;
(4)直接利用二次根式乘法运算法则计算得出答案.
解:(1)原式= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=4.
(2)原式=4 ( http: / / www.21cnjy.com )=4 ( http: / / www.21cnjy.com ).
(3)原式=6×(﹣3)× ( http: / / www.21cnjy.com )=﹣18×4=﹣72.
(4)原式=3×2× ( http: / / www.21cnjy.com )=30 ( http: / / www.21cnjy.com ).
20.已知A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.
【分析】根据最简二次根式的定义得出关于a的方程,求出a的值,求出A和B,得出 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )=3 ( http: / / www.21cnjy.com ),求出方程的解即可.21教育网
解:∵A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),A,B都是最简二次根式,C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),A+B=C,
∴a+3=3a﹣1,
解得:a=2,
∴A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),
∴A+B=3 ( http: / / www.21cnjy.com ),
∵A+B=C,
∴ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )=3 ( http: / / www.21cnjy.com )
∴20(x+1)=180,
∴x=8.
21.已知 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),且x为偶数,求(1+x) ( http: / / www.21cnjy.com )的值.
【分析】根据题意,求出x的取值范围,然后化简求解即可.
解:∵ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
∴6<x≤9,
∵x为偶数,
∴x=8,
则(1+x) ( http: / / www.21cnjy.com )=(1+x) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=6.
22.已知: ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),且x是偶数,求:代数式(x+2) ( http: / / www.21cnjy.com )的值.
【分析】直接利用二次根式的定义得出x的取值范围,进而得出x的值,进而化简得出答案.
解:由 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),可得:
( http: / / www.21cnjy.com )
所以,解得:6<x≤9,
又因为x是偶数,所以x=8,
所以(x+2) ( http: / / www.21cnjy.com )=(8+2) ( http: / / www.21cnjy.com )=10 ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com ).
23.已知 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )是相等的最简二次根式.
(1)求a,b的值;
(2)求 ( http: / / www.21cnjy.com )的值.
【分析】(1)根据题意,它们的被开方数相同,列出方程组求出a,b的值;
(2)根据算术平方根的概念解答即可.
解:(1)∵ ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )是相等的最简二次根式,
∴ ( http: / / www.21cnjy.com ).
解得, ( http: / / www.21cnjy.com ),
∴a的值是0,b的值是2;
(2) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com ).
24.(1)探索:先观察并计算下列各式,在空白处填上“>”、“<”或“=”,并完成后面的问题.
( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) = ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) = ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) = ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) = ( http: / / www.21cnjy.com )…
用 ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )表示上述规律为: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b≥0) ;
(2)利用(1)中的结论,求 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )的值
(3)设x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com )试用含x,y的式子表示 ( http: / / www.21cnjy.com ).
【分析】(1)先求出每个式子的值,再比较即可;
(2)根据规律,把被开方数相乘,根指数不变,即可求出答案;
(3)先分解质因数,再根据规律得出 ( http: / / www.21cnjy.com ),即可得出答案.
解:(1)∵ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )=2×4=8, ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=8,
∴ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
故答案为:=,=,=,=, ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b≥0);
(2) ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
=2;
(3)∵x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com ),
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
=x x y
=x2y.
( http: / / www.21cnjy.com )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)