第1讲 二次根式的概念及性质培优复习讲义(教师版+学生版)

文档属性

名称 第1讲 二次根式的概念及性质培优复习讲义(教师版+学生版)
格式 zip
文件大小 1.0MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2018-02-02 11:27:03

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
第1讲 二次根式的概念及性质复习
一、知识回顾:
一、二次根式的概念
二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.
二、二次根式的性质
1.双重非负性:≥0,a≥0.
2. .
注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式。 【来源:21·世纪·教育·网】
3.
注意:(1)字母不一定是正数.
(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.
(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.
4. 公式与的区别与联系
(1)表示求一个数的平方的算术根,a的范围是一切实数.
(2)表示一个数的算术平方根的平方,a的范围是非负数.
(3)和的运算结果都是非负的.
二、经典例题
考点一、二次根式概念的判别
例1. 下列各式中,那些是二次根式?哪些不是?为什么?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com )(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com )
(5) ( http: / / www.21cnjy.com );(6) ( http: / / www.21cnjy.com );
(7) ( http: / / www.21cnjy.com );(8) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )、(3) ( http: / / www.21cnjy.com )、(6) ( http: / / www.21cnjy.com )符合二次根式的定义,属于二次根式;
(2) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),无意义,不是二次根式;
(4) ( http: / / www.21cnjy.com )属于三次根式;
(5) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),被开方数是正数,属于二次根式;
(7) ( http: / / www.21cnjy.com )的被开方数是负数时,它无意义,不是二次根式;
(8) ( http: / / www.21cnjy.com )的被开方数是负数,无意义,不是二次根式.
考点二、二次根式有意义
例2. 当x取什么样的值时,下列二次根式有意义?写出简单过程.
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),由x﹣5≥0得,x≥5;
(2) ( http: / / www.21cnjy.com ),由2﹣4x≥0得,x≤ ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com ),由3x+4>0得,x>﹣ ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ),由2x﹣4>0得,x>2.
例3. ( http: / / www.21cnjy.com ),求:x﹣20082的值.
【解答】解:∵x﹣2009≥0,∴x≥2009,
则原式可化简为:x﹣2008+ ( http: / / www.21cnjy.com )=x,
即: ( http: / / www.21cnjy.com )=2008,
∴x﹣2009=20082,
∴x﹣20082=2009.
例4. 若m适合关系式: ( http: / / www.21cnjy.com ),求m的值.
【解答】解:根据题意得: ( http: / / www.21cnjy.com ),
则x+y﹣199=0,
即 ( http: / / www.21cnjy.com )=0,
则 ( http: / / www.21cnjy.com ),解得 ( http: / / www.21cnjy.com ),
故m=201.
例5. 已知a,b分别为等腰三角形的两条边长,且a b满足b=4+ ( http: / / www.21cnjy.com )+3 ( http: / / www.21cnjy.com ),求此三角形的周长.
【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,
解得,a≥2,a≤2,则a=2,
则b=4,
∵2+2=4,∴2、2、4不能组成三角形,
∴此三角形的周长为2+4+4=10.
考点三、二次根式定义的应用
例6. 已知 ( http: / / www.21cnjy.com )是整数,求正整数n的最大值和最小值.
【解答】解:∵ ( http: / / www.21cnjy.com )是整数,
∴13﹣n≥0,∴解得:n≤13,
∴正整数n的最大值为:13,最小值为:4.
例7. (1)已知一个数的平方根是2a﹣3和4﹣a,求这个数.
(2)已知y= ( http: / / www.21cnjy.com )+9x,求 ( http: / / www.21cnjy.com )的平方根.
【解答】解:(1)由题意得:2a﹣3+4﹣a=0,
解得:a=﹣1;
这个数是(4+1)2=25;
(2)由题意得: ( http: / / www.21cnjy.com ),
解得:x= ( http: / / www.21cnjy.com ),
则y=9× ( http: / / www.21cnjy.com )=3,
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2,
2的平方根是± ( http: / / www.21cnjy.com ).
考点四、二次根式的整数部分与小数部分
例8. 设a为 ( http: / / www.21cnjy.com )的小数部分,b为 ( http: / / www.21cnjy.com )的小数部分,求 ( http: / / www.21cnjy.com )的值.
【解答】解:∵2< ( http: / / www.21cnjy.com )<3,a为 ( http: / / www.21cnjy.com )的小数部分,
∴a= ( http: / / www.21cnjy.com )﹣2,
∵b为 ( http: / / www.21cnjy.com )的小数部分,2< ( http: / / www.21cnjy.com )<3
∴b= ( http: / / www.21cnjy.com )﹣2,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ).
考点五、二次根式的双重非负性
例9. 把x ( http: / / www.21cnjy.com )根号外的因数移到根号内,结果是(  )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C.﹣ ( http: / / www.21cnjy.com ) D.﹣ ( http: / / www.21cnjy.com )
【解答】解:由x ( http: / / www.21cnjy.com )可知x<0,
所以x ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ),
故选:C.
例10. 已知y= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),化简|1﹣4y|﹣ ( http: / / www.21cnjy.com )=  .
【解答】解:y= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),
∴1﹣x≥0,2x﹣2≥0,
∴x=1,
代入得:y= ( http: / / www.21cnjy.com ),
∴原式=|1﹣4× ( http: / / www.21cnjy.com )|﹣ ( http: / / www.21cnjy.com )=0﹣ ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ).
故答案为:﹣ ( http: / / www.21cnjy.com ).
考点六、二次根式的性质公式的运用
例11. 想一想:将等式 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )反过来的等式 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )还成立吗?式子: ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )成立吗?仿照上面的方法,化简下列各式:(1) ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )(3) ( http: / / www.21cnjy.com ).
【解答】解:成立,
(1)2 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
(2)11 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
(3)6 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点七、公式的应用
例12. 有这样一类题目:将 ( http: / / www.21cnjy.com )化简,如果你能找到两个数m、n,使记m2+n2=a,并且mn= ( http: / / www.21cnjy.com ),则将a±2 ( http: / / www.21cnjy.com ),变成m2+n2±2mn=(m±n)2开方,从而使得 ( http: / / www.21cnjy.com )化简.
例如:化简 ( http: / / www.21cnjy.com ).
因为3+2 ( http: / / www.21cnjy.com )=1+2+2 ( http: / / www.21cnjy.com )=12+( ( http: / / www.21cnjy.com ))2+2 ( http: / / www.21cnjy.com )=(1+ ( http: / / www.21cnjy.com ))2
所以 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=1+ ( http: / / www.21cnjy.com )
仿照上例化简下列各式:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ).
【解答】解:(1)原式
= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2+ ( http: / / www.21cnjy.com ).
(2)原式
= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
例13. 如图,实数a、b在数轴上的位置,化简: ( http: / / www.21cnjy.com ).
( http: / / www.21cnjy.com )
【解答】解:由数轴知,a<0,且b>0,
∴a﹣b<0,
∴ ( http: / / www.21cnjy.com ),
=|a|﹣|b|﹣[﹣(a﹣b)],
=(﹣a)﹣b+a﹣b,
=﹣2b.
例14. 已知实数a满足 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=a,求a﹣20132的值.(提示:a﹣2014≥0,即a≥2014)
【解答】解:根据二次根式有意义的条件可得a﹣2014≥0,解得a≥2014,
∵ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=a,
∴a﹣2013+ ( http: / / www.21cnjy.com )=a,
∴ ( http: / / www.21cnjy.com )=2013,
∴a=20132+2014,
∴a﹣20132=2014.
例15. (利用 ( http: / / www.21cnjy.com )解决本题)已知△ABC的三边分别为a、b、c,化简: ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,
∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.
三、堂课变式
A组 夯实基础
1. 若实数a,b满足 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=3, ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=3k,则k的取值范围是(  )
A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1
2. 若实数a满足方程 ( http: / / www.21cnjy.com ),则[a]=(  ),其中[a]表示不超过a的最大整数.
A.0 B.1 C.2 D.3
3. 若1<x<3,则|x﹣3|+ ( http: / / www.21cnjy.com )的值为(  )
A.2x﹣4 B.﹣2 C.4﹣2x D.2
4. 若a<0,则化简 ( http: / / www.21cnjy.com )得(  )
A.a ( http: / / www.21cnjy.com ) B.﹣a ( http: / / www.21cnjy.com ) C.a ( http: / / www.21cnjy.com ) D.﹣a ( http: / / www.21cnjy.com )
5. 下列五个等式中一定成立的有(  )
① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com );③ ( http: / / www.21cnjy.com );
④a0=1;⑤ ( http: / / www.21cnjy.com ).
A.1个 B.2个 C.3个 D.4个
6. 已知1≤a≤ ( http: / / www.21cnjy.com ),化简 ( http: / / www.21cnjy.com )+|a﹣2|的结果是(  )
A.2a﹣3 B.2a+3 C.3 D.1
7. 下列各式是否为二次根式?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com );
(5) ( http: / / www.21cnjy.com ).
8. 当x为何值时,下列各式在实数范围内有意义?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
9. 若 ( http: / / www.21cnjy.com ),则x=   ;若x2=(﹣3)2,则x=   ;若(x﹣1)2=16,x=   .
10. 若3<x<4,化简 ( http: / / www.21cnjy.com )+|5﹣x|的正确结果是  .
11. 化简求值如图,化简:
(1) ( http: / / www.21cnjy.com );
(2)先化简,再求值:( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com )其中x= ( http: / / www.21cnjy.com )+1,y= ( http: / / www.21cnjy.com )﹣1.
( http: / / www.21cnjy.com )
12. 化简:(1) ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com ).
B组 能力提高
13. 设正整数a、m、n满足 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),则这样的a、m、n的取值(  )
A.有一组 B.有二组 C.多于二组 D.不存在
14. 某校研究性学习小组在学习二次根式 ( http: / / www.21cnjy.com )=|a|之后,研究了如下四个问题,其中错误的是(  )
A.在a>1的条件下化简代数式a+ ( http: / / www.21cnjy.com )的结果为2a﹣1
B.当a+ ( http: / / www.21cnjy.com )的值恒为定值时,字母a的取值范围是a≤1
C.a+ ( http: / / www.21cnjy.com )的值随a变化而变化,当a取某个数值时,上述代数式的值可以为 ( http: / / www.21cnjy.com )
D.若 ( http: / / www.21cnjy.com )=( ( http: / / www.21cnjy.com ))2,则字母a必须满足a≥1
15. 若 ( http: / / www.21cnjy.com )=5,则m=   .
16. 已知 ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )…则第四个式子为    ,第n个式子为  .
17. 已知x是正整数,且 ( http: / / www.21cnjy.com )是整数,求x的最小值.
18. 已知:y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )﹣2016,求x+y的平方根.
19. 若实数a满足|2016﹣a|+ ( http: / / www.21cnjy.com )=a,求a﹣20162的值.
C组 培优精英
20. 已知:n是正整数且 ( http: / / www.21cnjy.com )是整数.
(1)求n的最小值;
(2)试写出满足 ( http: / / www.21cnjy.com )≤2107的n的所有可能值.
21. 设 ( http: / / www.21cnjy.com ),
求m10+m9+m8+…+m﹣47的值.
22. 如果一个三角形的三边长分别为 ( http: / / www.21cnjy.com )、k、 ( http: / / www.21cnjy.com ),则化简 ( http: / / www.21cnjy.com )﹣|2k﹣5|的结果是(  )
A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k
23. 计算:
( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com ).
24. 探索规律
观察下列各式及验证过程:n=2时,有式①: ( http: / / www.21cnjy.com );n=3时,有式②: ( http: / / www.21cnjy.com );
式①验证:
( http: / / www.21cnjy.com )
式②验证:
( http: / / www.21cnjy.com )
(1)针对上述式①、式②的规律,请写出n=4时的式子;
(2)请写出满足上述规律的用n(n为任意自然数,且n≥2)表示的等式,并加以验证.
四、课后巩固
A组 夯实基础
1. 已知0<x<1,那么在x, ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),x2中最大的是(  )
A.x B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D.x2
2. 如果 ( http: / / www.21cnjy.com )是二次根式,那么x应满足(  )
A.x≥2 B.x>2 C.x≤2 D.x<2
3. 下列各式: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),﹣ ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),哪些是二次根式?哪些不是?为什么?
4. 当x为何值时,下列各式在实数范围内有意义?
(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com ) (3) ( http: / / www.21cnjy.com ) (4) ( http: / / www.21cnjy.com ).
5. 计算: ( http: / / www.21cnjy.com )﹣(2010)2= 2009 .
6. 实数a、b在数轴上的位置如图所示,请化简:|a|﹣ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ).
( http: / / www.21cnjy.com )
7. 判断题:
甲、乙两人计算算式x+ ( http: / / www.21cnjy.com )的值,当x=3的时候,得到不同的答案,其中甲的解答是x+ ( http: / / www.21cnjy.com )=x+ ( http: / / www.21cnjy.com )=x+1﹣x=1;乙的解答是x+ ( http: / / www.21cnjy.com )=x+ ( http: / / www.21cnjy.com )=x+x﹣1=5
哪一个答案是正确的?为什么?对的说出理由,错的指出错误的原因.
( http: / / www.21cnjy.com )
8. 已知点M(﹣4x﹣5,3﹣x)在第二象限,化简|﹣4x﹣5|﹣ ( http: / / www.21cnjy.com ).
B组 能力提高
9. 计算: ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=  .
10. 若a、b、c三个数在数轴上对应点的位置如图所示,化简: ( http: / / www.21cnjy.com )=   .
( http: / / www.21cnjy.com )
11. 将式子写成完全平方的形式:
如:5+2 ( http: / / www.21cnjy.com )=3+2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+2=( ( http: / / www.21cnjy.com ))2+2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+( ( http: / / www.21cnjy.com ))2=( ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))2;
7+2 ( http: / / www.21cnjy.com )=( ( http: / / www.21cnjy.com ))2+2× ( http: / / www.21cnjy.com )×1+12=( ( http: / / www.21cnjy.com )+1)2
请变形:(1)7 ( http: / / www.21cnjy.com );(2)7+2 ( http: / / www.21cnjy.com );(3)4+2 ( http: / / www.21cnjy.com ).
12. (1)已知y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+8x,求 ( http: / / www.21cnjy.com )的平方根.
(2)当﹣4<x<1时,化简 ( http: / / www.21cnjy.com )﹣2 ( http: / / www.21cnjy.com ).
13. 已知a,b,c为一个三角形的三边长,化简 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣|b﹣c﹣a|+ ( http: / / www.21cnjy.com ).
14. 计算:
(1)
( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=  . ( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=   .
(2)思考:通过上述计算,可以发现什么规律?并运用发现的规律计算:
① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com );③ ( http: / / www.21cnjy.com ).
C组 培优精英
15. 若实数x,y满足x﹣y+1=0且1<y<2,化简 ( http: / / www.21cnjy.com )得(  )
A.7 B.2x+2y﹣7 C.11 D.9﹣4y
16. 已知, ( http: / / www.21cnjy.com ),且x、y均为整数,求x+y的值.
17. 化简: ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ) (a> ( http: / / www.21cnjy.com )b>0).
18. 已知关于x,y的方程组 ( http: / / www.21cnjy.com )的解都不大于1.
(1)求m的范围.
(2)化简:
( http: / / www.21cnjy.com ).
( http: / / www.21cnjy.com )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)21世纪教育网 –中小学教育资源及组卷应用平台
第1讲 二次根式的概念及性质复习
一、知识回顾:
一、二次根式的概念
二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.
二、二次根式的性质
1.双重非负性:≥0,a≥0.
2. .
注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式。 【来源:21·世纪·教育·网】
3.
注意:(1)字母不一定是正数.
(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.
(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.
4. 公式与的区别与联系
(1)表示求一个数的平方的算术根,a的范围是一切实数.
(2)表示一个数的算术平方根的平方,a的范围是非负数.
(3)和的运算结果都是非负的.
二、经典例题
考点一、二次根式概念的判别
例1. 下列各式中,那些是二次根式?哪些不是?为什么?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com )(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com )
(5) ( http: / / www.21cnjy.com );(6) ( http: / / www.21cnjy.com );
(7) ( http: / / www.21cnjy.com );(8) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )、(3) ( http: / / www.21cnjy.com )、(6) ( http: / / www.21cnjy.com )符合二次根式的定义,属于二次根式;
(2) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),无意义,不是二次根式;
(4) ( http: / / www.21cnjy.com )属于三次根式;
(5) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),被开方数是正数,属于二次根式;
(7) ( http: / / www.21cnjy.com )的被开方数是负数时,它无意义,不是二次根式;
(8) ( http: / / www.21cnjy.com )的被开方数是负数,无意义,不是二次根式.
考点二、二次根式有意义
例2. 当x取什么样的值时,下列二次根式有意义?写出简单过程.
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),由x﹣5≥0得,x≥5;
(2) ( http: / / www.21cnjy.com ),由2﹣4x≥0得,x≤ ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com ),由3x+4>0得,x>﹣ ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ),由2x﹣4>0得,x>2.
例3. ( http: / / www.21cnjy.com ),求:x﹣20082的值.
【解答】解:∵x﹣2009≥0,∴x≥2009,
则原式可化简为:x﹣2008+ ( http: / / www.21cnjy.com )=x,
即: ( http: / / www.21cnjy.com )=2008,
∴x﹣2009=20082,
∴x﹣20082=2009.
例4. 若m适合关系式: ( http: / / www.21cnjy.com ),求m的值.
【解答】解:根据题意得: ( http: / / www.21cnjy.com ),
则x+y﹣199=0,
即 ( http: / / www.21cnjy.com )=0,
则 ( http: / / www.21cnjy.com ),解得 ( http: / / www.21cnjy.com ),
故m=201.
例5. 已知a,b分别为等腰三角形的两条边长,且a b满足b=4+ ( http: / / www.21cnjy.com )+3 ( http: / / www.21cnjy.com ),求此三角形的周长.
【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,
解得,a≥2,a≤2,则a=2,
则b=4,
∵2+2=4,∴2、2、4不能组成三角形,
∴此三角形的周长为2+4+4=10.
考点三、二次根式定义的应用
例6. 已知 ( http: / / www.21cnjy.com )是整数,求正整数n的最大值和最小值.
【解答】解:∵ ( http: / / www.21cnjy.com )是整数,
∴13﹣n≥0,∴解得:n≤13,
∴正整数n的最大值为:13,最小值为:4.
例7. (1)已知一个数的平方根是2a﹣3和4﹣a,求这个数.
(2)已知y= ( http: / / www.21cnjy.com )+9x,求 ( http: / / www.21cnjy.com )的平方根.
【解答】解:(1)由题意得:2a﹣3+4﹣a=0,
解得:a=﹣1;
这个数是(4+1)2=25;
(2)由题意得: ( http: / / www.21cnjy.com ),
解得:x= ( http: / / www.21cnjy.com ),
则y=9× ( http: / / www.21cnjy.com )=3,
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2,
2的平方根是± ( http: / / www.21cnjy.com ).
考点四、二次根式的整数部分与小数部分
例8. 设a为 ( http: / / www.21cnjy.com )的小数部分,b为 ( http: / / www.21cnjy.com )的小数部分,求 ( http: / / www.21cnjy.com )的值.
【解答】解:∵2< ( http: / / www.21cnjy.com )<3,a为 ( http: / / www.21cnjy.com )的小数部分,
∴a= ( http: / / www.21cnjy.com )﹣2,
∵b为 ( http: / / www.21cnjy.com )的小数部分,2< ( http: / / www.21cnjy.com )<3
∴b= ( http: / / www.21cnjy.com )﹣2,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ).
考点五、二次根式的双重非负性
例9. 把x ( http: / / www.21cnjy.com )根号外的因数移到根号内,结果是(  )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C.﹣ ( http: / / www.21cnjy.com ) D.﹣ ( http: / / www.21cnjy.com )
【解答】解:由x ( http: / / www.21cnjy.com )可知x<0,
所以x ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ),
故选:C.
例10. 已知y= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),化简|1﹣4y|﹣ ( http: / / www.21cnjy.com )=  .
【解答】解:y= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),
∴1﹣x≥0,2x﹣2≥0,
∴x=1,
代入得:y= ( http: / / www.21cnjy.com ),
∴原式=|1﹣4× ( http: / / www.21cnjy.com )|﹣ ( http: / / www.21cnjy.com )=0﹣ ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ).
故答案为:﹣ ( http: / / www.21cnjy.com ).
考点六、二次根式的性质公式的运用
例11. 想一想:将等式 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )反过来的等式 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )还成立吗?式子: ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )成立吗?仿照上面的方法,化简下列各式:(1) ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )(3) ( http: / / www.21cnjy.com ).
【解答】解:成立,
(1)2 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
(2)11 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
(3)6 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点七、公式的应用
例12. 有这样一类题目:将 ( http: / / www.21cnjy.com )化简,如果你能找到两个数m、n,使记m2+n2=a,并且mn= ( http: / / www.21cnjy.com ),则将a±2 ( http: / / www.21cnjy.com ),变成m2+n2±2mn=(m±n)2开方,从而使得 ( http: / / www.21cnjy.com )化简.
例如:化简 ( http: / / www.21cnjy.com ).
因为3+2 ( http: / / www.21cnjy.com )=1+2+2 ( http: / / www.21cnjy.com )=12+( ( http: / / www.21cnjy.com ))2+2 ( http: / / www.21cnjy.com )=(1+ ( http: / / www.21cnjy.com ))2
所以 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=1+ ( http: / / www.21cnjy.com )
仿照上例化简下列各式:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ).
【解答】解:(1)原式
= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2+ ( http: / / www.21cnjy.com ).
(2)原式
= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
例13. 如图,实数a、b在数轴上的位置,化简: ( http: / / www.21cnjy.com ).
( http: / / www.21cnjy.com )
【解答】解:由数轴知,a<0,且b>0,
∴a﹣b<0,
∴ ( http: / / www.21cnjy.com ),
=|a|﹣|b|﹣[﹣(a﹣b)],
=(﹣a)﹣b+a﹣b,
=﹣2b.
例14. 已知实数a满足 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=a,求a﹣20132的值.(提示:a﹣2014≥0,即a≥2014)
【解答】解:根据二次根式有意义的条件可得a﹣2014≥0,解得a≥2014,
∵ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=a,
∴a﹣2013+ ( http: / / www.21cnjy.com )=a,
∴ ( http: / / www.21cnjy.com )=2013,
∴a=20132+2014,
∴a﹣20132=2014.
例15. (利用 ( http: / / www.21cnjy.com )解决本题)已知△ABC的三边分别为a、b、c,化简: ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,
∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.
三、堂课变式
A组 夯实基础
1. 若实数a,b满足 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=3, ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=3k,则k的取值范围是(  )
A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1
【解答】解:若实数a,b满足 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=3,又有 ( http: / / www.21cnjy.com )≥0, ( http: / / www.21cnjy.com )≥0,
故有0≤ ( http: / / www.21cnjy.com )≤3 ①,0≤ ( http: / / www.21cnjy.com )≤3,则
﹣3≤ ( http: / / www.21cnjy.com )≤0 ②
①+②可得﹣3≤ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )≤3,又有 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=3k,
即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.
2. 若实数a满足方程 ( http: / / www.21cnjy.com ),则[a]=(  ),其中[a]表示不超过a的最大整数.
A.0 B.1 C.2 D.3
【解答】解:根据二次根式有意义的条件,可得a≥1.
原方程可以变形为:
a﹣ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),两边同平方得:
a2+1﹣ ( http: / / www.21cnjy.com )﹣2a ( http: / / www.21cnjy.com )=a﹣ ( http: / / www.21cnjy.com ),a2+1﹣2 ( http: / / www.21cnjy.com )=a.
a2﹣a﹣2 ( http: / / www.21cnjy.com )+1=0,
解得 ( http: / / www.21cnjy.com )=1,
∴a2﹣a=1,a= ( http: / / www.21cnjy.com )(负值舍去).
a≈1.618.
所以[a]=1,故选B.
3. 若1<x<3,则|x﹣3|+ ( http: / / www.21cnjy.com )的值为(  )
A.2x﹣4 B.﹣2 C.4﹣2x D.2
【解答】解:∵1<x<3,
∴|x﹣3|+ ( http: / / www.21cnjy.com )=3﹣x+x﹣1=2.
故选:D.
4. 若a<0,则化简 ( http: / / www.21cnjy.com )得(  )
A.a ( http: / / www.21cnjy.com ) B.﹣a ( http: / / www.21cnjy.com ) C.a ( http: / / www.21cnjy.com ) D.﹣a ( http: / / www.21cnjy.com )
【解答】解:∵a<0,
∴ ( http: / / www.21cnjy.com )=﹣a ( http: / / www.21cnjy.com ).
故选:B.
5. 下列五个等式中一定成立的有(  )
① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com );③ ( http: / / www.21cnjy.com );
④a0=1;⑤ ( http: / / www.21cnjy.com ).
A.1个 B.2个 C.3个 D.4个
【解答】解:① ( http: / / www.21cnjy.com )的条件是a≥0,故①不一定成立;
②当a<0时, ( http: / / www.21cnjy.com )不成立,故②不一定成立;
③ ( http: / / www.21cnjy.com )一定成立;
④a0=1的条件是a不等于0,故④不一定成立;
⑤ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),故⑤错误.
故选:A.
6. 已知1≤a≤ ( http: / / www.21cnjy.com ),化简 ( http: / / www.21cnjy.com )+|a﹣2|的结果是(  )
A.2a﹣3 B.2a+3 C.3 D.1
【解答】解: ( http: / / www.21cnjy.com )+|a﹣2|
= ( http: / / www.21cnjy.com )+|a﹣2|
=|a﹣1|+|a﹣2|
∵1≤a≤ ( http: / / www.21cnjy.com ),
∴a﹣1>0,a﹣2<0,
∴原式=a﹣1+2﹣a=1.
故选:D.
7. 下列各式是否为二次根式?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com );
(5) ( http: / / www.21cnjy.com ).
【解答】解:(1)∵m2≥0,∴m2+1>0
∴ ( http: / / www.21cnjy.com )是二次根式.
(2)∵a2≥0,
∴ ( http: / / www.21cnjy.com )是二次根式;
(3)∵n2≥0,∴﹣n2≤0,
∴当n=0时 ( http: / / www.21cnjy.com )才是二次根式,
故不是二次根式;
(4)当a﹣2≥0时是二次根式,当a﹣2<0时不是二次根式;即当a≥2是二次根式,当a<0时不是二次根式,故不是二次根式;21教育网
(5)当x﹣y≥0时是二次根式,当x﹣y<0时不是二次根式;即当x≥y是二次根式,当x<y时不是二次根式,故不是二次根式.21cnjy.com
8. 当x为何值时,下列各式在实数范围内有意义?
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
【解答】解:(1)∵二次根式 ( http: / / www.21cnjy.com )有意义,
∴x﹣2<0.
解得:x<2.
(2)∵ ( http: / / www.21cnjy.com )有意义,
∴x≥0且1﹣ ( http: / / www.21cnjy.com )≠0.
解得:x≥0且x≠1.
(3)∵ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )有意义,
∴3﹣x≥0,x﹣2>0,x﹣2.5≠0.
解得:2<x≤3且x≠2.5.
9. 若 ( http: / / www.21cnjy.com ),则x=   ;若x2=(﹣3)2,则x=   ;若(x﹣1)2=16,x=   .
【解答】解: ( http: / / www.21cnjy.com )=5,
∴x2=25,
∴x=±5,
∵x2=(﹣3)2=9,
∴x=±3,
∵(x﹣1)2=16,
∴x﹣1=±4,
∴x=5或﹣3,
故答案为:±5,±3,5或﹣3.
10. 若3<x<4,化简 ( http: / / www.21cnjy.com )+|5﹣x|的正确结果是  .
【解答】解:∵3<x<4,
∴ ( http: / / www.21cnjy.com )+|5﹣x|
=|x﹣3|+|5﹣x|
=x﹣3+5﹣x
=2.
故答案为:2.
11. 化简求值如图,化简:
(1) ( http: / / www.21cnjy.com );
(2)先化简,再求值:( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com )其中x= ( http: / / www.21cnjy.com )+1,y= ( http: / / www.21cnjy.com )﹣1.
( http: / / www.21cnjy.com )
【解答】解:(1)根据数轴可知,b<a<0,c>0,|c|>|b|>|a|,
∴a+b<0,c﹣a>0,c+b>0,
原式=﹣a﹣(﹣a﹣b)+(c﹣a)+c+b,
=﹣a+a+b+c﹣a+c+b,
=2b+2c﹣a.
解:(2)当x= ( http: / / www.21cnjy.com )+1,y= ( http: / / www.21cnjy.com )﹣1时,
原式= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
=2.
12. 化简:(1) ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com ).
【解答】解:(1)原式= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
=3+ ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(3)原式= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
=3﹣ ( http: / / www.21cnjy.com ).
B组 能力提高
13. 设正整数a、m、n满足 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),则这样的a、m、n的取值(  )
A.有一组 B.有二组 C.多于二组 D.不存在
【解答】解:∵4 ( http: / / www.21cnjy.com )=1×2×2× ( http: / / www.21cnjy.com )=2×2× ( http: / / www.21cnjy.com )=2×1×2 ( http: / / www.21cnjy.com ),
∵ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),
∴a2﹣4 ( http: / / www.21cnjy.com )=m+n﹣2 ( http: / / www.21cnjy.com ),
∴m+n=a2, ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
∵a、m、n为正整数,
∵8=1×8=2×4,
∴①若8=1×8则a2=m+n=9,∴a=3满足,
又m>n,∴m=8,n=1,a=3;
②若8=2×4,则a2=m+n=6,∴a= ( http: / / www.21cnjy.com ),不满足题意;
∴这样的a、m、n的取值有一组,
14. 故选A.
15. 某校研究性学习小组在学习二次根式 ( http: / / www.21cnjy.com )=|a|之后,研究了如下四个问题,其中错误的是(  )
A.在a>1的条件下化简代数式a+ ( http: / / www.21cnjy.com )的结果为2a﹣1
B.当a+ ( http: / / www.21cnjy.com )的值恒为定值时,字母a的取值范围是a≤1
C.a+ ( http: / / www.21cnjy.com )的值随a变化而变化,当a取某个数值时,上述代数式的值可以为 ( http: / / www.21cnjy.com )
D.若 ( http: / / www.21cnjy.com )=( ( http: / / www.21cnjy.com ))2,则字母a必须满足a≥1
【解答】解:A.原式=a+ ( http: / / www.21cnjy.com )=a+|a﹣1|当a>1时,原式=a+a﹣1=2a﹣1,故A正确;
B.原式=a+ ( http: / / www.21cnjy.com )=a+|a﹣1|,当a≤1时,原式=a+|a﹣1|=a+1﹣a=1,故B正确;
C.当a>1时,原式=2a﹣1>1;当a≤1时,原式=1,故C错误;
D.由 ( http: / / www.21cnjy.com )(a≥0),可知D正确.
故选:C.
16. 若 ( http: / / www.21cnjy.com )=5,则m=   .
【解答】解:∵ ( http: / / www.21cnjy.com )=5,
∴(2m﹣1)2=25,
∴2m﹣1=±5,
∴m=3或﹣2,
故答案为:3或﹣2.
17. 已知 ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )、 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )…则第四个式子为    ,第n个式子为  .21·cn·jy·com
【解答】解:第四个式子为 ( http: / / www.21cnjy.com )=5× ( http: / / www.21cnjy.com ),
第n个式子为 ( http: / / www.21cnjy.com )=n× ( http: / / www.21cnjy.com ),
故答案为: ( http: / / www.21cnjy.com )=5× ( http: / / www.21cnjy.com ); ( http: / / www.21cnjy.com )=n× ( http: / / www.21cnjy.com ).
18. 已知x是正整数,且 ( http: / / www.21cnjy.com )是整数,求x的最小值.
【解答】解:∵12=4×3,
∴ ( http: / / www.21cnjy.com )是整数的正整数x的最小值是3.
19. 已知:y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )﹣2016,求x+y的平方根.
【解答】解:∵y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )﹣2016,
∴x﹣2017≥0且2017﹣x≥0,
∴x≥2017且x≤2017,
∴x=2017,
y=﹣2016,
∴x+y=2017﹣2016=1,
∴x+y的平方根是±1.
20. 若实数a满足|2016﹣a|+ ( http: / / www.21cnjy.com )=a,求a﹣20162的值.
【解答】解:由题意,得
a≥2017,
原式化简,得
a﹣2016+ ( http: / / www.21cnjy.com )=a,
( http: / / www.21cnjy.com )=2016
a﹣2017=20162,
a﹣20162=2017.
C组 培优精英
21. 已知:n是正整数且 ( http: / / www.21cnjy.com )是整数.
(1)求n的最小值;
(2)试写出满足 ( http: / / www.21cnjy.com )≤2107的n的所有可能值.
【解答】解:(1)∵ ( http: / / www.21cnjy.com )=7 ( http: / / www.21cnjy.com ),
∴ ( http: / / www.21cnjy.com )是整数时n的最小值是43;
(2)∵ ( http: / / www.21cnjy.com )≤2107,
∴n≤2107,
∴n的所有可能值是43,172,387,688,1075,1548,2064,2017.
22. 设 ( http: / / www.21cnjy.com ),
求m10+m9+m8+…+m﹣47的值.
【解答】解:∵1≤a≤2,0≤a﹣1≤1,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
∴m10+m9+m8+…+m﹣47=(m10+m9+m8+…+m+1)﹣48
= ( http: / / www.21cnjy.com )
=2048﹣1﹣48=1999.
注:此题可利用关系式20+21+…+2n=2n+1﹣1,运算将更简单.
23. 如果一个三角形的三边长分别为 ( http: / / www.21cnjy.com )、k、 ( http: / / www.21cnjy.com ),则化简 ( http: / / www.21cnjy.com )﹣|2k﹣5|的结果是(  )
A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k
【解答】解:∵一个三角形的三边长分别为 ( http: / / www.21cnjy.com )、k、 ( http: / / www.21cnjy.com ),
∴ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )<k< ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),
∴3<k<4,
( http: / / www.21cnjy.com )﹣|2k﹣5|,
= ( http: / / www.21cnjy.com )﹣|2k﹣5|,
=6﹣k﹣(2k﹣5),
=﹣3k+11,
=11﹣3k,
故选D.
24. 计算:
( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com ).
【解答】:
( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )
=1+ ( http: / / www.21cnjy.com )+1+ ( http: / / www.21cnjy.com )+1+ ( http: / / www.21cnjy.com )+…+1+ ( http: / / www.21cnjy.com )
=1×2003+(1﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))
=2003+(1﹣ ( http: / / www.21cnjy.com ))
=2003+ ( http: / / www.21cnjy.com )
=2003 ( http: / / www.21cnjy.com ).
25. 探索规律
观察下列各式及验证过程:n=2时,有式①: ( http: / / www.21cnjy.com );n=3时,有式②: ( http: / / www.21cnjy.com );
式①验证:
( http: / / www.21cnjy.com )
式②验证:
( http: / / www.21cnjy.com )
(1)针对上述式①、式②的规律,请写出n=4时的式子;
(2)请写出满足上述规律的用n(n为任意自然数,且n≥2)表示的等式,并加以验证.
【解答】解:(1) ( http: / / www.21cnjy.com ).
∵ ( http: / / www.21cnjy.com ).
(2) ( http: / / www.21cnjy.com );
( http: / / www.21cnjy.com ).
四、课后巩固
A组 夯实基础
1. 已知0<x<1,那么在x, ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),x2中最大的是(  )
A.x B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D.x2
【解答】解:当x=0.01时, ( http: / / www.21cnjy.com )=100, ( http: / / www.21cnjy.com )=0.1,x2=0.0001,故选B.
2. 如果 ( http: / / www.21cnjy.com )是二次根式,那么x应满足(  )
A.x≥2 B.x>2 C.x≤2 D.x<2
【解答】解:∵ ( http: / / www.21cnjy.com )是二次根式,
∴x﹣2≥0,解得x≥2.
故选A.
3. 下列各式: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),﹣ ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),哪些是二次根式?哪些不是?为什么?
【解答】解: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )+2都是二次根式,因为它们都含有二次根号,且被开方数都是非负数.
( http: / / www.21cnjy.com )虽然含有根号,但根指数不是2,所不是二次根式.
﹣ ( http: / / www.21cnjy.com )x不含二次根号,不是二次根式.
( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )中,不能确定被开方数是非负数,当a<0时 ( http: / / www.21cnjy.com )无意义;当x+1<0时 ( http: / / www.21cnjy.com )无意义,所 ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )不一定是二次根式.
在 ( http: / / www.21cnjy.com )中,﹣4<0, ( http: / / www.21cnjy.com )没有意义,故不是二次根式.
在 ( http: / / www.21cnjy.com )(x> ( http: / / www.21cnjy.com ))中,1﹣2x<0, ( http: / / www.21cnjy.com )无意义,故不是二次根式.
在 ( http: / / www.21cnjy.com ),无论a为任何数,﹣2﹣a2总是负数, ( http: / / www.21cnjy.com )没有意义,故不是二次根式.
4. 当x为何值时,下列各式在实数范围内有意义?
(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com ) (3) ( http: / / www.21cnjy.com ) (4) ( http: / / www.21cnjy.com ).
【解答】解:(1)∵二次根式有意义,
∴x≥0.
(2)∵二次根式有意义,
∴﹣x≥0.
∴x≤0.
(3)∵二次根式有意义,
∴x+2≥0.
∴x≥﹣2.
(4)∵二次根式有意义,
∴1﹣2x≥0.
∴x ( http: / / www.21cnjy.com ).
5. 计算: ( http: / / www.21cnjy.com )﹣(2010)2= 2009 .
【解答】解: ( http: / / www.21cnjy.com )﹣(2010)2
= ( http: / / www.21cnjy.com )﹣(2010)2,
= ( http: / / www.21cnjy.com )﹣(2010)2,
= ( http: / / www.21cnjy.com )﹣(2010)2,
= ( http: / / www.21cnjy.com )﹣(2010)2,
= ( http: / / www.21cnjy.com )﹣(2010)2,
=2010×2011﹣1﹣(2010)2,
=2009.
故答案为:2009.
6. 实数a、b在数轴上的位置如图所示,请化简:|a|﹣ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ).
( http: / / www.21cnjy.com )
【解答】解:∵从数轴可知:a<0<b,
∴:|a|﹣ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
=|a|﹣|a|﹣|b|
=﹣|b|
=﹣b.
7. 判断题:
甲、乙两人计算算式x+ ( http: / / www.21cnjy.com )的值,当x=3的时候,得到不同的答案,其中甲的解答是x+ ( http: / / www.21cnjy.com )=x+ ( http: / / www.21cnjy.com )=x+1﹣x=1;乙的解答是x+ ( http: / / www.21cnjy.com )=x+ ( http: / / www.21cnjy.com )=x+x﹣1=5
哪一个答案是正确的?为什么?对的说出理由,错的指出错误的原因.
( http: / / www.21cnjy.com )
【解答】解:乙的结果对,
∵x=3,
∴1﹣x<0且 ( http: / / www.21cnjy.com )≥0,
即 ( http: / / www.21cnjy.com )=x﹣1,而不是 ( http: / / www.21cnjy.com )=1﹣x,
∴乙的答案是正确的,甲的答案是错误的.
8. 已知点M(﹣4x﹣5,3﹣x)在第二象限,化简|﹣4x﹣5|﹣ ( http: / / www.21cnjy.com ).
【解答】解:∵点M(﹣4x﹣5,3﹣x)在第二象限,
∴﹣4x﹣5<0,3﹣x>0,
原式=|﹣4x﹣5|﹣|3﹣x|
=4x+5﹣3+x
=5x+2
B组 能力提高
9. 计算: ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=  .
【解答】解:
1+20122+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
∵20132+20132 20122+20122=2013×(2012+1)+(2013×2012)2+2012×(2013﹣1),
=(2013×2012)2+2×(2012×2013)+1,
=(2013×2012+1)2,
∴ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
=2012+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
=2012.
故答案为:2012.
10. 若a、b、c三个数在数轴上对应点的位置如图所示,化简: ( http: / / www.21cnjy.com )=   .
( http: / / www.21cnjy.com )
【解答】解:由数轴上各点的位置可知,a<b<0,c>0,|a|>|b|>c,
∴ ( http: / / www.21cnjy.com )=﹣a;|a﹣b|=b﹣a;|a+b|=﹣(a+b);|﹣3c|=3c;|a+c|=﹣(a+c);
故原式= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=3.
故答案是:3.
11. 将式子写成完全平方的形式:
如:5+2 ( http: / / www.21cnjy.com )=3+2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+2=( ( http: / / www.21cnjy.com ))2+2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+( ( http: / / www.21cnjy.com ))2=( ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))2;
7+2 ( http: / / www.21cnjy.com )=( ( http: / / www.21cnjy.com ))2+2× ( http: / / www.21cnjy.com )×1+12=( ( http: / / www.21cnjy.com )+1)2
请变形:(1)7 ( http: / / www.21cnjy.com );(2)7+2 ( http: / / www.21cnjy.com );(3)4+2 ( http: / / www.21cnjy.com ).
【解答】解:(1)7 ( http: / / www.21cnjy.com )=22+2× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
(2)7+2 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )+2× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
(3)4+2 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )+2× ( http: / / www.21cnjy.com )+12= ( http: / / www.21cnjy.com ).
12. (1)已知y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+8x,求 ( http: / / www.21cnjy.com )的平方根.
(2)当﹣4<x<1时,化简 ( http: / / www.21cnjy.com )﹣2 ( http: / / www.21cnjy.com ).
【解答】解:(1)∵y= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+8x,
∴2x﹣1=0,解得x= ( http: / / www.21cnjy.com ),
∴y=4,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=4,
4的平方根是±2.
故 ( http: / / www.21cnjy.com )的平方根是±2.
(2)∵﹣4<x<1,
∴ ( http: / / www.21cnjy.com )﹣2 ( http: / / www.21cnjy.com )
=|x+4|﹣2|x﹣1|
=x+4+2(x﹣1)
=x+4+2x﹣2
=3x+2.
13. 已知a,b,c为一个三角形的三边长,化简 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣|b﹣c﹣a|+ ( http: / / www.21cnjy.com ).
【解答】解:∵a,b,c为一个三角形的三边长,
∴a+b>c,a+c>b,b+c>a,
∴ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣|b﹣c﹣a|+ ( http: / / www.21cnjy.com )
=a+b+c+a+b﹣c﹣a﹣c+b+b+c﹣a
=4b.
14. 计算:
(1)
( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=  . ( http: / / www.21cnjy.com )=   . ( http: / / www.21cnjy.com )=   .
(2)思考:通过上述计算,可以发现什么规律?并运用发现的规律计算:
① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com );③ ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )=|3|=3; ( http: / / www.21cnjy.com )=|0|=0; ( http: / / www.21cnjy.com )=| ( http: / / www.21cnjy.com )|= ( http: / / www.21cnjy.com ); ( http: / / www.21cnjy.com )=|﹣2|=2; ( http: / / www.21cnjy.com )=|﹣5|=5.2·1·c·n·j·y
故答案为:3;0; ( http: / / www.21cnjy.com );2;5.
(2)① ( http: / / www.21cnjy.com )=|3﹣π|=π﹣3;② ( http: / / www.21cnjy.com )=|a﹣1|=1﹣a;③ ( http: / / www.21cnjy.com )=|2﹣x|= ( http: / / www.21cnjy.com ).
C组 培优精英
15. 若实数x,y满足x﹣y+1=0且1<y<2,化简 ( http: / / www.21cnjy.com )得(  )
A.7 B.2x+2y﹣7 C.11 D.9﹣4y
【解答】解:∵x﹣y+1=0,
∴y=x+1,
∵1<y<2,
∴1<x+1<2,
∴0<x<1,
∴ ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com ),
=|2x+1|+2|x﹣3|,
=2x+1+2(3﹣x),
=7,
故选A.
16. 已知, ( http: / / www.21cnjy.com ),且x、y均为整数,求x+y的值.
【解答】解:由题意知:20≤x≤30,
又因为x,y均为整数,
所以x﹣20,30﹣x均需是一个整数的平方,
所以x﹣20=1,30﹣x=1,
故x只能取21或29,
当x=21时,y=4,x+y的值为25;
当x=29时,y=4,x+y的值为33.
故x+y的值为25或33.
17. 化简: ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ) (a> ( http: / / www.21cnjy.com )b>0).
【解答】解:原式= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )=| ( http: / / www.21cnjy.com )+a|﹣|b﹣ ( http: / / www.21cnjy.com )|
∵a> ( http: / / www.21cnjy.com )b>0,
∴b< ( http: / / www.21cnjy.com ),
∴原式= ( http: / / www.21cnjy.com )+a﹣ ( http: / / www.21cnjy.com )+b=a+b.
18. 已知关于x,y的方程组 ( http: / / www.21cnjy.com )的解都不大于1.
(1)求m的范围.
(2)化简:
( http: / / www.21cnjy.com ).
【解答】解:(1)由①+②,得
6x=m+1,即x= ( http: / / www.21cnjy.com );
由①﹣②,得
4y=1﹣m,解得,y= ( http: / / www.21cnjy.com ); ( http: / / www.21cnjy.com )
∵关于x,y的方程组 ( http: / / www.21cnjy.com )的解都不大于1.
∴ ( http: / / www.21cnjy.com )
解③,得m≤5,
解③,得m≥﹣3;
∴m的范围是﹣3≤m≤5;
(2)∵x≤1,y≤1,﹣3≤m≤5,
∴x﹣1≤0,y﹣1≤0,6<m+3<8,﹣2≤m﹣5≤0,x+y﹣2<0,
∴原式=|x﹣1|+|y﹣1|+|m+3|+|m﹣5|﹣|x+y﹣2|
=1﹣x+1﹣y+m+3﹣m+5+x+y﹣2
=8.
( http: / / www.21cnjy.com )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)