21世纪教育网 –中小学教育资源及组卷应用平台
第2讲 二次根式的运算
一、知识回顾
知识点一:二次根式的乘除
1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
=·(a≥0,b≥0)
2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
·=.(a≥0,b≥0)
3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b>0)
4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b>0)
注意:乘、除法的运算法则要灵活运用,在实 ( http: / / www.21cnjy.com )际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
知识点二:最简二次根式和同类二次根式
1、最简二次根式:
(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.
2、同类二次根式(可合并根式):
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
知识点三:二次根式计算——分母有理化
1.分母有理化
定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下:21·cn·jy·com
①单项二次根式:利用来确定,如:,,与等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。如与,,分别互为有理化因式。
3.分母有理化的方法与步骤:
①先将分子、分母化成最简二次根式;
②将分子、分母都乘以分母的有理化因式,使分母中不含根式;
③最后结果必须化成最简二次根式或有理式。
知识点四:根式比较大小
1、根式变形法 当时,①如果,则;②如果,则。
2、平方法 当时,①如果,则;②如果,则。
3、分母有理化法 通过分母有理化,利用分子的大小来比较。
4、分子有理化法 通过分子有理化,利用分母的大小来比较。
5、倒数法 6、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。
7、作差比较法 在对两数比较大小时,经常运用如下性质:① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com )
8、求商比较法 它运用如下性质:当a>0,b>0时,则:① ( http: / / www.21cnjy.com ); ② ( http: / / www.21cnjy.com )
二、经典例题
考点一、二次根式的乘除
例1. 小东在学习了 ( http: / / www.21cnjy.com )后,认为 ( http: / / www.21cnjy.com )也成立,因此他认为一个化简过程: ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )是正确的.
①你认为他的化简对吗?如果不对,请写出正确的化简过程;
②说明 ( http: / / www.21cnjy.com )成立的条件.
【解答】解:①化简不对,正确过程 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2;
②∵0作除数无意义,
∴ ( http: / / www.21cnjy.com )成立的条件:a≥0,b>0.
例2. 计算:
(1) ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )×(﹣5 ( http: / / www.21cnjy.com ))
(2)5x ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )5 (﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ))÷3 ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )×(﹣5 ( http: / / www.21cnjy.com ))
= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )×(﹣ ( http: / / www.21cnjy.com ))
=﹣ ( http: / / www.21cnjy.com );
(2)5x ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=5x ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )
=5x ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )5 (﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ))÷3 ( http: / / www.21cnjy.com )
=2b2 ( http: / / www.21cnjy.com ) (﹣ ( http: / / www.21cnjy.com )a ( http: / / www.21cnjy.com )) ( http: / / www.21cnjy.com )
=﹣3a2b2 ( http: / / www.21cnjy.com ).
例3. 已知x为奇数,且 ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )的值.
【解答】解:∵ ( http: / / www.21cnjy.com ),
∴ ( http: / / www.21cnjy.com ),解得6≤x<9;
又∵x为奇数,
∴x=7,
∴ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
=8+2 ( http: / / www.21cnjy.com ).
例4. (1)计算: ( http: / / www.21cnjy.com ) ( ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ));
(2)已知实数x、y满足: ( http: / / www.21cnjy.com )+(y﹣ ( http: / / www.21cnjy.com ))2=0,求 ( http: / / www.21cnjy.com )的值.
【解答】解:(1) ( http: / / www.21cnjy.com ) ( ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ))
= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(2)由 ( http: / / www.21cnjy.com )+(y﹣ ( http: / / www.21cnjy.com ))2=0,
可知, ( http: / / www.21cnjy.com )=0且(y﹣ ( http: / / www.21cnjy.com ))2=0,
即 ( http: / / www.21cnjy.com ),
解得 ( http: / / www.21cnjy.com ).
所以 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点二、分母有理化
例5. 把下列各式分母有理化:
(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com ) (3) ( http: / / www.21cnjy.com )(x>1)
【解答】解:(1)原式= ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣x;
(3)原式= ( http: / / www.21cnjy.com ).
例6. 先化简,再求值,已知x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com ),求2x2﹣3xy﹢2y2 的值.
【解答】解:∵x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com ),
∴x=2+ ( http: / / www.21cnjy.com ),y=2﹣ ( http: / / www.21cnjy.com ),
∴x+y=4,xy=1,
∴原式=2×16﹣7=25.
例7. 设M= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com ),N=1﹣2+3﹣4+…+2015﹣2016,求 ( http: / / www.21cnjy.com )的值.
【解答】解:M= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1,
N=1﹣2+3﹣4+…+2015﹣2016
=﹣1×1008
=﹣1008,
则 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ).
考点三、二次根式的加减
例8. 计算
(1)| ( http: / / www.21cnjy.com )﹣2|﹣ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
【解答】解:(1)原式=2﹣ ( http: / / www.21cnjy.com )﹣2+2 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )×5+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1+ ( http: / / www.21cnjy.com )
=﹣ ( http: / / www.21cnjy.com ).
例9. 化简:
(1) ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )
【解答】解:(1)设 ( http: / / www.21cnjy.com ),则
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
(2)设 ( http: / / www.21cnjy.com )
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
(3)设 ( http: / / www.21cnjy.com ),
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
∵x≥0,∴x+3>0,x+1>0,
∴原式= ( http: / / www.21cnjy.com ).
例10. 计算 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
【解答】解:设a=n+2+ ( http: / / www.21cnjy.com ),b=n+2﹣ ( http: / / www.21cnjy.com ),
∴a+b=2(n+2),ab=(n+2)2﹣(n2﹣4)=4(n+2),
∴原式= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )﹣2,
= ( http: / / www.21cnjy.com )﹣2,
=n.
考点四、最简二次根式
例11. 把下列二次根式化简最简二次根式:
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=4 ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
例12. 判断下列二次根式是否是最简二次根式,并说明理由.
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com );(5) ( http: / / www.21cnjy.com );(6) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )=5 ( http: / / www.21cnjy.com ),不是最简二次根式;
(2) ( http: / / www.21cnjy.com )=|a| ( http: / / www.21cnjy.com ),不是最简二次根式;
(3) ( http: / / www.21cnjy.com )是最简二次根式;
(4) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),不是最简二次根式;
(5) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=|a+b| ( http: / / www.21cnjy.com ),不是最简二次根式;
(6) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )是最简二次根式.
例13. 已知A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.
【解答】解:∵A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),A,B都是最简二次根式,C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),A+B=C,
∴a+3=3a﹣1,
解得:a=2,
∴A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),
∴A+B=3 ( http: / / www.21cnjy.com ),
∵A+B=C,
∴ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )=3 ( http: / / www.21cnjy.com )
∴20(x+1)=180,
∴x=8.
考点五、同类二次根式
例14. 若最简二次根式 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )是同类二次根式,求m、n的值.
【解答】解:根据题意得: ( http: / / www.21cnjy.com ),
解得: ( http: / / www.21cnjy.com ).
∴m=±2 ( http: / / www.21cnjy.com ),n=± ( http: / / www.21cnjy.com ).
例15. 如果 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )都是最简二次根式,又是同类二次根式,且 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=0,求x、y的值.
【解答】解:由题意,得3a﹣11=19﹣2a,
解得,a=6,
∴ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=0,
∵ ( http: / / www.21cnjy.com )≥0, ( http: / / www.21cnjy.com )≥0,
∴24﹣3x=0,y﹣6=0,
解得,x=8,y=6.
考点六、二次根式的化简求值
例16. 请先化简 ( http: / / www.21cnjy.com ),再选取两个你喜欢的数代入化简后的式子中分别求值.
【解答】解:∵ ( http: / / www.21cnjy.com )有意义且x﹣1≠0
∴x﹣1>0,
即x>1,
∴原式= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
当x=4时,原式=2.
当x=9时,原式=3.
例17. 已知x=( ( http: / / www.21cnjy.com )﹣1)﹣1,y=( ( http: / / www.21cnjy.com )+1)﹣1,求 ( http: / / www.21cnjy.com )的值.
【解答】解:由题意知:x= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )+1,y= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
故x+y=2 ( http: / / www.21cnjy.com ),xy=1;x﹣y=2>0,2y﹣x= ( http: / / www.21cnjy.com )﹣3<0;
∴原式= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=(x﹣y)× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )×(x﹣2y)
=x+y+ ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com )+1.
例18. 先阅读然后解答问题:化简 ( http: / / www.21cnjy.com )
解:原式= ( http: / / www.21cnjy.com )
根据上面所得到的启迪,完成下面的问题:
(1)化简: ( http: / / www.21cnjy.com )(2)化简: ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )﹣2;
(2)∵( ( http: / / www.21cnjy.com ))2,
=4+ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )+4﹣ ( http: / / www.21cnjy.com ),
=8+2,
=10,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点七、二次根式的大小比较
例19. 利用作差法比较两个根式大小
(1)7 ( http: / / www.21cnjy.com )与6 ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com ).
【解答】解:(1)因为7 ( http: / / www.21cnjy.com )﹣6 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )>0
所以7 ( http: / / www.21cnjy.com )>6 ( http: / / www.21cnjy.com );
(2)因为 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )<0,
所以 ( http: / / www.21cnjy.com )< ( http: / / www.21cnjy.com ).
例20. 用求商法比较下列根式大小:
(1) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );(2)8 ( http: / / www.21cnjy.com )与14 ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),
所以 ( http: / / www.21cnjy.com )> ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ),
所以8 ( http: / / www.21cnjy.com )>14 ( http: / / www.21cnjy.com ).
例21. 先阅读,后解答:
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )
像上述解题过程中, ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1) ( http: / / www.21cnjy.com ) 的有理化因式是 ; ( http: / / www.21cnjy.com )的有理化因式是 .
(2)将下列式子进行分母有理化:
① ( http: / / www.21cnjy.com )= ; ② ( http: / / www.21cnjy.com )= .
③已知 ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),比较a与b的大小关系.
【解答】解:(1)根据 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,
( http: / / www.21cnjy.com ) 的有理化因式是: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )的有理化因式是: ( http: / / www.21cnjy.com )﹣2,
故答案为: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )﹣2;
(2)① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),
② ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=3﹣ ( http: / / www.21cnjy.com );
③∵a= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2﹣ ( http: / / www.21cnjy.com ),b=2﹣ ( http: / / www.21cnjy.com ),
∴a=b.
考点八、二次根式的混合运算
2.计算:
(1)(x2 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))÷x2y2 ( http: / / www.21cnjy.com );
(2)4 ( http: / / www.21cnjy.com )(x>y>0).
【解答】解:(1)解法一:
原式=x2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
解法二:
原式=( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ).
(2)原式=(4× ( http: / / www.21cnjy.com )×3) ( http: / / www.21cnjy.com )
=6 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ).
三、堂课变式
A组 夯实基础
1. 如果a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com )+1,那么( )
A.a>b B.a=b C.a= ( http: / / www.21cnjy.com ) D.以上都不对
2. 下列给出的二次根式是最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
3. 若4 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )可以合并,则m的值不可以是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
4. 当x 时, ( http: / / www.21cnjy.com )成立.
5. 计算:
(1)2 ( http: / / www.21cnjy.com )×3 ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )÷( ( http: / / www.21cnjy.com ))×(4 ( http: / / www.21cnjy.com ))
(4) ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )(a、b>0)
6. 先化简再求值:a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com )时,求 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))的值.
7. 计算:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ).
8. 计算:
( http: / / www.21cnjy.com ).
B组 能力提高
9. 若 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )都是最简二次根式,则m= ,n= .
10. 化简: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) (﹣4 ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
(2)已知x= ( http: / / www.21cnjy.com )﹣1,求x2+3x﹣1的值.
11. 观察下列等式,然后解决问题:
① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣1,② ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),③ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),….
(1)请用含n(n为正整数)的等式表示上述规律: ;
(2)利用上述规律,求下列式子的值:
( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
12. 化简(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )
13. 若 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )的值.
C组 培优精英
14. 设
( http: / / www.21cnjy.com )
则与s最接近的整数是( )
A.2009 B.2006 C.2007 D.2008
15. 已知: ( http: / / www.21cnjy.com )(0<a<1),求代数式 ( http: / / www.21cnjy.com )的值.
16. 若a= ( http: / / www.21cnjy.com ),计算共有2000层 ( http: / / www.21cnjy.com )的值.
四、课后巩固
A组 夯实基础
1. 化简 ( http: / / www.21cnjy.com )的结果为( )
A.2+ ( http: / / www.21cnjy.com ) B.2﹣ ( http: / / www.21cnjy.com ) C.﹣2+ ( http: / / www.21cnjy.com ) D.﹣2﹣ ( http: / / www.21cnjy.com )
2. 下列二次根式是最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
3. 下列二次根式中,与 ( http: / / www.21cnjy.com )是同类二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
4. 若 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )成立,则x的取值范围是 .
5. ( http: / / www.21cnjy.com )= .
6. 计算下面各组算式.
(1) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )
观察每组之间有什么关系?并把这个规律用式子总结出来.
7. 已知a= ( http: / / www.21cnjy.com ),求a3﹣4a2﹣2a的值.
8. 计算:
(1) ( http: / / www.21cnjy.com )+(π﹣1)0﹣4 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )﹣1)
(2) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))
(3)|2 ( http: / / www.21cnjy.com )﹣3|﹣(﹣ ( http: / / www.21cnjy.com ))﹣2+ ( http: / / www.21cnjy.com ).
9. 求值:
(1)已知a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )的值.
(2)已知x= ( http: / / www.21cnjy.com ),求x2﹣x+ ( http: / / www.21cnjy.com )的值.
10. 计算
(1) ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com ).
B组 能力提高
11. 若 ( http: / / www.21cnjy.com )=a, ( http: / / www.21cnjy.com )=b,则 ( http: / / www.21cnjy.com )的值用a、b可以表示为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
12. 已知x、y为正数,且 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))=3 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )+5 ( http: / / www.21cnjy.com )),求 ( http: / / www.21cnjy.com )的值.
13. 已知最简二次根式 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )能够合并,求ab.
14. 计算:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
C组 培优精英
15. 如果正数a、b、c满足a+c=2b,求证: ( http: / / www.21cnjy.com ).
16. 已知 ( http: / / www.21cnjy.com ),求x6+x5+2x4﹣4x3+3x2+4x﹣4的整数部分.
17. 已知实数a、b满足条件|a﹣b|= ( http: / / www.21cnjy.com )<1,化简代数式( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )) ( http: / / www.21cnjy.com ),将结果表示成只含有字母a的形式.
( http: / / www.21cnjy.com )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)21世纪教育网 –中小学教育资源及组卷应用平台
第2讲 二次根式的运算
一、知识回顾
知识点一:二次根式的乘除
1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
=·(a≥0,b≥0)
2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
·=.(a≥0,b≥0)
3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b>0)
4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )(a≥0,b>0)
注意:乘、除法的运算法则要灵活运用,在实 ( http: / / www.21cnjy.com )际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
知识点二:最简二次根式和同类二次根式
1、最简二次根式:
(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.
2、同类二次根式(可合并根式):
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。21cnjy.com
知识点三:二次根式计算——分母有理化
1.分母有理化
定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下:21·cn·jy·com
①单项二次根式:利用来确定,如:,,与等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。如与,,分别互为有理化因式。
3.分母有理化的方法与步骤:
①先将分子、分母化成最简二次根式;
②将分子、分母都乘以分母的有理化因式,使分母中不含根式;
③最后结果必须化成最简二次根式或有理式。
知识点四:根式比较大小
1、根式变形法 当时,①如果,则;②如果,则。
2、平方法 当时,①如果,则;②如果,则。
3、分母有理化法 通过分母有理化,利用分子的大小来比较。
4、分子有理化法 通过分子有理化,利用分母的大小来比较。
5、倒数法 6、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。
7、作差比较法 在对两数比较大小时,经常运用如下性质:① ( http: / / www.21cnjy.com );② ( http: / / www.21cnjy.com )
8、求商比较法 它运用如下性质:当a>0,b>0时,则:① ( http: / / www.21cnjy.com ); ② ( http: / / www.21cnjy.com )
二、经典例题
考点一、二次根式的乘除
例1. 小东在学习了 ( http: / / www.21cnjy.com )后,认为 ( http: / / www.21cnjy.com )也成立,因此他认为一个化简过程: ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )是正确的.
①你认为他的化简对吗?如果不对,请写出正确的化简过程;
②说明 ( http: / / www.21cnjy.com )成立的条件.
【解答】解:①化简不对,正确过程 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2;
②∵0作除数无意义,
∴ ( http: / / www.21cnjy.com )成立的条件:a≥0,b>0.
例2. 计算:
(1) ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )×(﹣5 ( http: / / www.21cnjy.com ))
(2)5x ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )5 (﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ))÷3 ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )×(﹣5 ( http: / / www.21cnjy.com ))
= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )×(﹣ ( http: / / www.21cnjy.com ))
=﹣ ( http: / / www.21cnjy.com );
(2)5x ( http: / / www.21cnjy.com )÷3 ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=5x ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )
=5x ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )5 (﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ))÷3 ( http: / / www.21cnjy.com )
=2b2 ( http: / / www.21cnjy.com ) (﹣ ( http: / / www.21cnjy.com )a ( http: / / www.21cnjy.com )) ( http: / / www.21cnjy.com )
=﹣3a2b2 ( http: / / www.21cnjy.com ).
例3. 已知x为奇数,且 ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )的值.
【解答】解:∵ ( http: / / www.21cnjy.com ),
∴ ( http: / / www.21cnjy.com ),解得6≤x<9;
又∵x为奇数,
∴x=7,
∴ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
=8+2 ( http: / / www.21cnjy.com ).
例4. (1)计算: ( http: / / www.21cnjy.com ) ( ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ));
(2)已知实数x、y满足: ( http: / / www.21cnjy.com )+(y﹣ ( http: / / www.21cnjy.com ))2=0,求 ( http: / / www.21cnjy.com )的值.
【解答】解:(1) ( http: / / www.21cnjy.com ) ( ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ))
= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(2)由 ( http: / / www.21cnjy.com )+(y﹣ ( http: / / www.21cnjy.com ))2=0,
可知, ( http: / / www.21cnjy.com )=0且(y﹣ ( http: / / www.21cnjy.com ))2=0,
即 ( http: / / www.21cnjy.com ),
解得 ( http: / / www.21cnjy.com ).
所以 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点二、分母有理化
例5. 把下列各式分母有理化:
(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com ) (3) ( http: / / www.21cnjy.com )(x>1)
【解答】解:(1)原式= ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣x;
(3)原式= ( http: / / www.21cnjy.com ).
例6. 先化简,再求值,已知x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com ),求2x2﹣3xy﹢2y2 的值.
【解答】解:∵x= ( http: / / www.21cnjy.com ),y= ( http: / / www.21cnjy.com ),
∴x=2+ ( http: / / www.21cnjy.com ),y=2﹣ ( http: / / www.21cnjy.com ),
∴x+y=4,xy=1,
∴原式=2×16﹣7=25.
例7. 设M= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com ),N=1﹣2+3﹣4+…+2015﹣2016,求 ( http: / / www.21cnjy.com )的值.
【解答】解:M= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1,
N=1﹣2+3﹣4+…+2015﹣2016
=﹣1×1008
=﹣1008,
则 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=﹣ ( http: / / www.21cnjy.com ).
考点三、二次根式的加减
例8. 计算
(1)| ( http: / / www.21cnjy.com )﹣2|﹣ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )(2) ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
【解答】解:(1)原式=2﹣ ( http: / / www.21cnjy.com )﹣2+2 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )×5+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣1+ ( http: / / www.21cnjy.com )
=﹣ ( http: / / www.21cnjy.com ).
例9. 化简:
(1) ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )
【解答】解:(1)设 ( http: / / www.21cnjy.com ),则
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
(2)设 ( http: / / www.21cnjy.com )
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
(3)设 ( http: / / www.21cnjy.com ),
原式= ( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
∵x≥0,∴x+3>0,x+1>0,
∴原式= ( http: / / www.21cnjy.com ).
例10. 计算 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
【解答】解:设a=n+2+ ( http: / / www.21cnjy.com ),b=n+2﹣ ( http: / / www.21cnjy.com ),
∴a+b=2(n+2),ab=(n+2)2﹣(n2﹣4)=4(n+2),
∴原式= ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )﹣2,
= ( http: / / www.21cnjy.com )﹣2,
=n.
考点四、最简二次根式
例11. 把下列二次根式化简最简二次根式:
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );(4) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=4 ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
例12. 判断下列二次根式是否是最简二次根式,并说明理由.
(1) ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com );(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com );(5) ( http: / / www.21cnjy.com );(6) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com )=5 ( http: / / www.21cnjy.com ),不是最简二次根式;
(2) ( http: / / www.21cnjy.com )=|a| ( http: / / www.21cnjy.com ),不是最简二次根式;
(3) ( http: / / www.21cnjy.com )是最简二次根式;
(4) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),不是最简二次根式;
(5) ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=|a+b| ( http: / / www.21cnjy.com ),不是最简二次根式;
(6) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )是最简二次根式.
例13. 已知A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.
【解答】解:∵A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),A,B都是最简二次根式,C= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),A+B=C,
∴a+3=3a﹣1,
解得:a=2,
∴A=2 ( http: / / www.21cnjy.com ),B= ( http: / / www.21cnjy.com ),
∴A+B=3 ( http: / / www.21cnjy.com ),
∵A+B=C,
∴ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )=3 ( http: / / www.21cnjy.com )
∴20(x+1)=180,
∴x=8.
考点五、同类二次根式
例14. 若最简二次根式 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )是同类二次根式,求m、n的值.
【解答】解:根据题意得: ( http: / / www.21cnjy.com ),
解得: ( http: / / www.21cnjy.com ).
∴m=±2 ( http: / / www.21cnjy.com ),n=± ( http: / / www.21cnjy.com ).
例15. 如果 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )都是最简二次根式,又是同类二次根式,且 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=0,求x、y的值.
【解答】解:由题意,得3a﹣11=19﹣2a,
解得,a=6,
∴ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )=0,
∵ ( http: / / www.21cnjy.com )≥0, ( http: / / www.21cnjy.com )≥0,
∴24﹣3x=0,y﹣6=0,
解得,x=8,y=6.
考点六、二次根式的化简求值
例16. 请先化简 ( http: / / www.21cnjy.com ),再选取两个你喜欢的数代入化简后的式子中分别求值.
【解答】解:∵ ( http: / / www.21cnjy.com )有意义且x﹣1≠0
∴x﹣1>0,
即x>1,
∴原式= ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
当x=4时,原式=2.
当x=9时,原式=3.
例17. 已知x=( ( http: / / www.21cnjy.com )﹣1)﹣1,y=( ( http: / / www.21cnjy.com )+1)﹣1,求 ( http: / / www.21cnjy.com )的值.
【解答】解:由题意知:x= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )+1,y= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
故x+y=2 ( http: / / www.21cnjy.com ),xy=1;x﹣y=2>0,2y﹣x= ( http: / / www.21cnjy.com )﹣3<0;
∴原式= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
=(x﹣y)× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )×(x﹣2y)
=x+y+ ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com )+1.
例18. 先阅读然后解答问题:化简 ( http: / / www.21cnjy.com )
解:原式= ( http: / / www.21cnjy.com )
根据上面所得到的启迪,完成下面的问题:
(1)化简: ( http: / / www.21cnjy.com )(2)化简: ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com )﹣2;
(2)∵( ( http: / / www.21cnjy.com ))2,
=4+ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )+4﹣ ( http: / / www.21cnjy.com ),
=8+2,
=10,
∴ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
考点七、二次根式的大小比较
例19. 利用作差法比较两个根式大小
(1)7 ( http: / / www.21cnjy.com )与6 ( http: / / www.21cnjy.com );(2) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com ).
【解答】解:(1)因为7 ( http: / / www.21cnjy.com )﹣6 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )>0
所以7 ( http: / / www.21cnjy.com )>6 ( http: / / www.21cnjy.com );
(2)因为 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )<0,
所以 ( http: / / www.21cnjy.com )< ( http: / / www.21cnjy.com ).
例20. 用求商法比较下列根式大小:
(1) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );(2)8 ( http: / / www.21cnjy.com )与14 ( http: / / www.21cnjy.com ).
【解答】解:(1) ( http: / / www.21cnjy.com ),
所以 ( http: / / www.21cnjy.com )> ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com ),
所以8 ( http: / / www.21cnjy.com )>14 ( http: / / www.21cnjy.com ).
例21. 先阅读,后解答:
( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )
像上述解题过程中, ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1) ( http: / / www.21cnjy.com ) 的有理化因式是 ; ( http: / / www.21cnjy.com )的有理化因式是 .
(2)将下列式子进行分母有理化:
① ( http: / / www.21cnjy.com )= ; ② ( http: / / www.21cnjy.com )= .
③已知 ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com ),比较a与b的大小关系.
【解答】解:(1)根据 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,
( http: / / www.21cnjy.com ) 的有理化因式是: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )的有理化因式是: ( http: / / www.21cnjy.com )﹣2,
故答案为: ( http: / / www.21cnjy.com ), ( http: / / www.21cnjy.com )﹣2;
(2)① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ),
② ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=3﹣ ( http: / / www.21cnjy.com );
③∵a= ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2﹣ ( http: / / www.21cnjy.com ),b=2﹣ ( http: / / www.21cnjy.com ),
∴a=b.
考点八、二次根式的混合运算
2.计算:
(1)(x2 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))÷x2y2 ( http: / / www.21cnjy.com );
(2)4 ( http: / / www.21cnjy.com )(x>y>0).
【解答】解:(1)解法一:
原式=x2 ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
解法二:
原式=( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ).
(2)原式=(4× ( http: / / www.21cnjy.com )×3) ( http: / / www.21cnjy.com )
=6 ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ).
三、堂课变式
A组 夯实基础
1. 如果a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com )+1,那么( )
A.a>b B.a=b C.a= ( http: / / www.21cnjy.com ) D.以上都不对
2. 下列给出的二次根式是最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
3. 若4 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )可以合并,则m的值不可以是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
4. 当x 时, ( http: / / www.21cnjy.com )成立.
5. 计算:
(1)2 ( http: / / www.21cnjy.com )×3 ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )÷( ( http: / / www.21cnjy.com ))×(4 ( http: / / www.21cnjy.com ))
(4) ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )(a、b>0)
6. 先化简再求值:a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com )时,求 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))的值.
7. 计算:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ).
8. 计算:
( http: / / www.21cnjy.com ).
B组 能力提高
9. 若 ( http: / / www.21cnjy.com )和 ( http: / / www.21cnjy.com )都是最简二次根式,则m= ,n= .
10. 化简: ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ) (﹣4 ( http: / / www.21cnjy.com ))÷ ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
(2)已知x= ( http: / / www.21cnjy.com )﹣1,求x2+3x﹣1的值.
11. 观察下列等式,然后解决问题:
① ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣1,② ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),③ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),….
(1)请用含n(n为正整数)的等式表示上述规律: ;
(2)利用上述规律,求下列式子的值:
( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )+…+ ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
12. 化简(1) ( http: / / www.21cnjy.com ) (2) ( http: / / www.21cnjy.com )
(3) ( http: / / www.21cnjy.com )
13. 若 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )的值.
C组 培优精英
14. 设
( http: / / www.21cnjy.com )
则与s最接近的整数是( )
A.2009 B.2006 C.2007 D.2008
15. 已知: ( http: / / www.21cnjy.com )(0<a<1),求代数式 ( http: / / www.21cnjy.com )的值.
16. 若a= ( http: / / www.21cnjy.com ),计算共有2000层 ( http: / / www.21cnjy.com )的值.
四、课后巩固
A组 夯实基础
1. 化简 ( http: / / www.21cnjy.com )的结果为( )
A.2+ ( http: / / www.21cnjy.com ) B.2﹣ ( http: / / www.21cnjy.com ) C.﹣2+ ( http: / / www.21cnjy.com ) D.﹣2﹣ ( http: / / www.21cnjy.com )
2. 下列二次根式是最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
3. 下列二次根式中,与 ( http: / / www.21cnjy.com )是同类二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
4. 若 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )成立,则x的取值范围是 .
5. ( http: / / www.21cnjy.com )= .
6. 计算下面各组算式.
(1) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )
观察每组之间有什么关系?并把这个规律用式子总结出来.
7. 已知a= ( http: / / www.21cnjy.com ),求a3﹣4a2﹣2a的值.
8. 计算:
(1) ( http: / / www.21cnjy.com )+(π﹣1)0﹣4 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )﹣1)
(2) ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )﹣( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ))
(3)|2 ( http: / / www.21cnjy.com )﹣3|﹣(﹣ ( http: / / www.21cnjy.com ))﹣2+ ( http: / / www.21cnjy.com ).
9. 求值:
(1)已知a= ( http: / / www.21cnjy.com ),b= ( http: / / www.21cnjy.com ),求 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )的值.
(2)已知x= ( http: / / www.21cnjy.com ),求x2﹣x+ ( http: / / www.21cnjy.com )的值.
10. 计算
(1) ( http: / / www.21cnjy.com )
(2) ( http: / / www.21cnjy.com ).
B组 能力提高
11. 若 ( http: / / www.21cnjy.com )=a, ( http: / / www.21cnjy.com )=b,则 ( http: / / www.21cnjy.com )的值用a、b可以表示为( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
12. 已知x、y为正数,且 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ))=3 ( http: / / www.21cnjy.com )( ( http: / / www.21cnjy.com )+5 ( http: / / www.21cnjy.com )),求 ( http: / / www.21cnjy.com )的值.
13. 已知最简二次根式 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )能够合并,求ab.
14. 计算:
(1) ( http: / / www.21cnjy.com );
(2) ( http: / / www.21cnjy.com );
(3) ( http: / / www.21cnjy.com );
(4) ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com ).
C组 培优精英
15. 如果正数a、b、c满足a+c=2b,求证: ( http: / / www.21cnjy.com ).
16. 已知 ( http: / / www.21cnjy.com ),求x6+x5+2x4﹣4x3+3x2+4x﹣4的整数部分.
17. 已知实数a、b满足条件|a﹣b|= ( http: / / www.21cnjy.com )<1,化简代数式( ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )) ( http: / / www.21cnjy.com ),将结果表示成只含有字母a的形式.
( http: / / www.21cnjy.com )
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)