21世纪教育网 –中小学教育资源及组卷应用平台
三角形的初步知识单元测验
一.选择题(共10小题,满分30分,每小题3分)
1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是( )
A.1<x< B. C. D.
2.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为( )
A.34° B.40° C.42° D.46°
3.用尺规作图法作已知角∠AOB的平分线的步骤如下:
①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;
②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;
③作射线OC.
则射线OC为∠AOB的平分线.
由上述作法可得△OCD≌△OCE的依据是( )
A.SAS B.ASA C.AAS D.SSS
4.下列说法中,正确的个数是( )
①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.
A.1 B.2 C.3 D.4
5.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )
A.3对 B.5对 C.6对 D.7对
6.下列命题:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7.如图,△ABC中,AD⊥BC,AB=AC,AE=AF,则图中全等三角形的对数有( )
A.5对 B.6对 C.7对 D.8对
8.如图,△ABC的外角平分线CP和内角平分线BP相较于点P,若∠BPC=25°,则∠CAP=( )
A.45° B.50° C.55° D.65°
9.如图,在Rt△ABC中,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=8,则△BDE的周长等于( )
A.16 B.12 C.10 D.8
10.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是( )
A.50° B.40° C.130° D.120°
二.填空题(共10小题,满分30分,每小题3分)
11.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为 .
12.[x]表示不超过x的最大整数,例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命题:①当x=﹣0.5时,y=0.5;②y的取值范围是:0≤y≤1;③对于所有的自变量x,函数值y随着x增大而一直增大.其中正确命题有 (只填写正确命题的序号).
13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .
14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是 (填上你认为适当的一个条件即可).
15.用推理的方法判断为正确的命题叫做 .
16.从1cm、3cm、5cm、7cm、9cm的五根小棒中任取三根,能围成 个三角形.
17.如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A= 度.
18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是 .
19.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是 .
20.从1,2,3…2004中任选k个数,使所选的k个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形边长互不相等),试问满足条件的k的最小值是 .
三.解答题(共4小题,满分40分,每小题10分)
21.(10分)已知:如图,在Rt△ABC中,∠C=90°,∠A≠∠B.
(1)画出△ABC关于直线AC对称的△AGC;(不要求写画法)
(2)在AG边上找一点D,使得BD的中点E满足CE=AD.请利用直尺和圆规作出图形,并写出你的简要作图步骤;(只能利用直尺画直线不能测量线段长度)
(3)在(1)、(2)和未添加辅助线及其他字母的条件下,直接写出图中与∠ABC相等的角,要求该角以C点为顶点.
22.(8分)如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.
23.(10分)如图,△ABO≌△CDO,点E、F在线段AC上,且AF=CE.求证:FD=BE.
24.(12分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.解:首先要能组成三角形,易得 1<x<5
下面求该三角形为直角三角形的边长情况(此为临界情况),显然长度为2的边对应的角必为锐角(2<3,短边对小角)则只要考虑3或者x为斜边的情况.
3为斜边时,由勾股定理,22+x2=32,得x=√5 作出图形,固定2边,旋转3边易知当1<x<√5 时,该三角形是以3为最大边的钝角三角形;
x 为斜边时,由勾股定理,22+32=x2,得x=√13,同样作图可得 当√13<x<5时,该三角形是以x为最大边的钝角三角形.
综上可知,当√5<x<√13 时,原三角形为锐角三角形.
故选:B.
2.解:设∠GBC=x,∠DCB=y,
在△BFC中,2x+y=180°﹣120°=60°①,
在△BGC中,x+2y=180°﹣102°=78°②,
解得:①+②:3x+3y=138°,
∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,
故选:C.
3.解:在△OEC和△ODC中,
∵,
∴△OEC≌△ODC(SSS),
故选:D.
4.解:①三角形的中线、角平分线、高都是线段,故正确;
②钝角三角形的高有两条在三角形外部,故错误;
③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;
④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.
所以正确的有1个.
故选:A.
5.解:①△ABE≌△CDF
∵AB∥CD,AD∥BC
∴AB=CD,∠ABE=∠CDF
∵AE⊥BD于E,CF⊥BD于E
∴∠AEB=∠CFD
∴△ABE≌△CDF;
②△AOE≌△COF
∵AB∥CD,AD∥BC,AC为ABCD对角线
∴OA=OC,∠EOA=∠FOC
∵∠AEO=∠CFO
∴△AOE≌△COF;
③△ABO≌△CDO
∵AB∥CD,AD∥BC,AC与BD交于点O
∴OD=OB,∠AOB=∠COD,OA=OC
∴△ABO≌△CDO;
④△BOC≌△DOA
∵AB∥CD,AD∥BC,AC与BD交于点O
∴OD=OB,∠BOC=∠DOA,OC=OA
∴△BOC≌△DOA;
⑤△ABC≌△CDA
∵AB∥CD,AD∥BC
∴BC=AD,DC=AB,∠ABC=∠CDA
∴△ABC≌△CDA;
⑥△ABD≌△CDB
∵AB∥CD,AD∥BC
∴∠BAD=∠BCD,AB=CD,AD=BC
∴△ABD≌△CDA;
⑦△ADE≌△CBF
∵AD=BC,DE=BF,AE=CF
∴△DEC≌△BFA.
故选:D.
6.解:①错误,﹣1的平方是1;
②正确;
③错误,方程右应还为1.2;
④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.
故选:A.
7.解:∵△ABC中,AD⊥BC,AB=AC,
∴BD=CD,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,
又AE=AF,AO=AO,
∴△AOE≌△AOF,
EO=FO,
进一步证明可得△BOD≌△COD,△BOE≌△COF,△AOB≌△AOC,△ABF≌△ACE,△BCE≌△CBF,共7对.
故选:C.
8.解:如图,延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=25°,
∴∠ABP=∠PBC=(x﹣25)°,
∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣25°)﹣(x°﹣25°)=50°,
∴∠CAF=130°,
在Rt△PFA和Rt△PMA中,
,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=65°.
故选:D.
9.解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
∴CD=DE.
在Rt△ACD与Rt△AED,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△BDE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=8.
故选:D.
10.解:∵∠ABC=66°,∠ACB=54°,
∴∠A=60°,
∵CF是AB上的高,
∴在△ACF中,∠ACF=180°﹣∠AFC﹣∠A=30°,
在△CEH中,∠ACF=30°,∠CEH=90°,
∴∠EHF=∠ACF+∠CEH=30°+90°=120°.
故选:D.
二.填空题(共10小题,满分30分,每小题3分)
11.解:用三角形稳固它们是因为三角形具有稳定性,
故答案为:三角形具有稳定性.
12.解:①根据题意可得[x]=﹣1,所以y=x﹣[x]=﹣0.5﹣(﹣1)=0.5,所以此命题正确;
②中y的取值范围是:0≤y<1,错误;
③当x取一正一负时,函数值y有可能随着x增大而一直增大,错误.
正确命题有①.
13.解:∵∠A=50°,
∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.
故答案为:115°.
14.解:∵∠1=∠2,∴∠AEB=∠AEC,
又 AE公共,
∴当∠B=∠C时,△ABE≌△ACE(AAS);
或BE=CE时,△ABE≌△ACE(SAS);
或∠BAE=∠CAE时,△ABE≌△ACE(ASA).
15.解:定理是用推理的方法判断为正确的命题,故用推理的方法判断为正确的命题叫做定理.
16.解:∵1+3<5,3+5<9,1+5<7.
∴只有三种能满足三边关系:5,7,9或3,5,7或3,7,9.
因而能组成三个三角形.
17.解:∵△ABC是等腰三角形,
∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,
又因为DE垂直且平分AB,
∴∠ABE=∠A,
∠EBC+∠ACB=∠AEB
∴15°+,
解得∠A=50°.
故填50.
18.解:如图,延长EP交BC于点F,
∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°﹣150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=8,
∵△APE和△ABD都是等边三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四边形CDEP是平行四边形,
∴四边形CDEP的面积=EP×CF=a×b=ab,
又∵(a﹣b)2=a2﹣2ab+b2≥0,
∴2ab≤a2+b2=8,
∴ab≤2,
即四边形PCDE面积的最大值为2.
故答案为:2.
19.解:当OC、OD在直线AB同侧时,如图:
∵OC⊥OD,∠AOC=30°;
∴∠BOD=180°﹣∠COD﹣∠AOC=180°﹣90°﹣30°=60°;
当OC、OD在直线AB异侧时,如图:
∵OC⊥OD,∠AOC=30°;
∴∠BOD=180°﹣∠AOD=180°﹣(∠DOC﹣∠AOC)=180°﹣(90°﹣30°)=120°.
20.解:为使k达到最大,可选加入之数等于已得数组中最大的两数之和,这样得:
1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597 ①
共16个数,对符合上述条件的任数组,a1,a2…an显然总有ai大于等于①中的第i个数,
所以n≤17≤k,从而知k的最小值为17.
故答案为:17.
三.解答题(共4小题,满分40分,每小题10分)
21.解:(1)所画△AGC见图. …(1分)
(2)所画图形见图.
作图简要步骤如下:
(1)作AC的垂直平分线,交AC于F点.…(2分)
(2)连接BF并延长,交AG于D点. …(3分)
(3)作BD的垂直平分线,交BD于E点,连接CE.
则D点和E点为所求.…(4分)
(3)在(1)、(2)和未添加辅助线及其他字母的条件下,图中以C点为顶点,且与∠ABC相等的角的是∠BCE. …(5分)
22.解:他的做法正确;
理由:在△MOE和△NOD中
∵,
∴△MOE≌△NOD(SAS),
∴∠OME=∠DNO,
∵OM=ON,OD=OE,
∴DM=EN,
∴在△MDC和△NEC中
,
∴△MDC≌△NEC(AAS),
∴DC=EC,
在△DOC和△EOC中
,
∴△DOC≌△EOC(SSS),
∴∠DOC=∠EOC,
∴OC就是∠AOB的平分线.
23.证明:∵△ABO≌△CDO,
∴OA=OC,OB=OD,
∴OA﹣AF=OC﹣CE,又AF=CE,
∴FO=OE,
在△OFD和△OEB中,
,
∴△OFD≌△OEB,
∴FD=BE.
24.(1)解:∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵∠BAD=15°,
∴∠CAE=45°﹣15°=30°,
Rt△ACE中,CE=1,
∴AC=2CE=2,
Rt△CED中,∠ECD=90°﹣60°=30°,
∴CD=2ED,
设ED=x,则CD=2x,
∴CE=x,
∴x=1,
x=,
∴CD=2x=,
∴BD=BC﹣CD=AC﹣CD=2﹣;
(2)如图2,连接CM,
∵∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∵AC=BC,CE=CF,
∴△ACE≌△BCF,
∴∠BFC=∠AEC=90°,
∵∠CFE=45°,
∴∠MFB=45°,
∵∠CFM=∠CBA=45°,
∴C、M、B、F四点共圆,
∴∠BCM=∠MFB=45°,
∴∠ACM=∠BCM=45°,
∵AC=BC,
∴AM=BM.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)