1.2定义与命题同步练习(含答案2份打包)

文档属性

名称 1.2定义与命题同步练习(含答案2份打包)
格式 zip
文件大小 106.2KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2018-07-20 16:07:00

文档简介

1.2 定义与命题(一)
A组
1.下列语句中,属于定义的是(D)
A. 两点确定一条直线
B. 两直线平行,同位角相等
C. 等角的余角相等
D. 直线外一点到这条直线的垂线段的长度叫做点到直线的距离
2.下列语句中,属于命题的是(C)
A. 直线AB与CD垂直吗
B. 过线段AB的中点作AB的垂线
C. 同位角不相等,两直线不平行
D. 连结A,B两点
3.命题“垂直于同一条直线的两条直线平行”的题设是(D)
A. 垂直
B. 两条直线
C. 同一条直线
D. 两条直线垂直于同一条直线
4.下列语句中,不属于命题的是(C)
A. 若两角之和为90°,则这两个角互补
B. 同角的余角相等
C. 作线段的垂直平分线
D. 相等的角是对顶角
5.把“对顶角相等”改写成“如果……那么……”的形式是如果两个角是对顶角,那么它们相等.
6.指出下列命题的条件和结论.
(1)同旁内角互补,两直线平行.
(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.
(3)邻补角的平分线互相垂直.
【解】 (1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.
(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.
(3)条件:两条射线是邻补角的平分线;结论:这两条射线互相垂直.
7.把命题改写成“如果……那么……”的形式.
(1)等底等高的两个三角形的面积相等.
(2)两直线平行,内错角相等.
(3)等角的余角相等.
【解】 (1)如果两个三角形等底等高,那么它们的面积相等.
(2)两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.
(3)如果两个角同为等角的余角,那么这两个角相等.
B组
8.下列命题正确的是(D)
A. 若a>b,b<c,则a>c
B. 若a>b,则ac>bc
C. 若a>b,则ac2>bc2
D. 若ac2>bc2,则a>b
9.对同一平面内的三条直线,给出下列5个论断:a∥b,b∥c,a⊥b,a∥c,a⊥c.以其中两个论断为条件.一个论断为结论,组成一个你认为正确的命题.
条件:a∥b,b∥c,结论:a∥c.
【解】 本题答案不唯一.
10.定义两种新变换:①f(a,b)=(a,-b),如f(1,2)=(1,-2);②g(a,b)=(b,a),如g(1,2)=(2,1).据此得g(f(5,-6))=(6,5).
【解】 ∵f(5,-6)=(5,6),
∴g(f(5,-6))=g(5,6)=(6,5).
数学乐园
(第11题)
11.如图,定义:直线l1与l2交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,求“距离坐标”是(1,2)的点的个数.导学号:91354002
(第11题解)
【解】 “距离坐标”是(1,2)的点表示的含义是该点到直线l1,l2的距离分别为1,2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1或a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1或b2上,它们有4个交点,即为如解图所示的点M1,M2,M3,M4.故满足条件的点的个数为4.
1.2 定义与命题(二)
A组
1.下列命题是真命题的是(A)
A. 互余的两个角之和是90°
B. 同角的余角互余
C. 等底的两个三角形面积相等
D. 相等的角是直角
2.下列命题是假命题的是(C)
A.三角形两边之和大于第三边
B.三角形的内角和等于180°
C.等边三角形旋转180°后能与本身重合
D.三角形的中线能平分三角形的面积
3.能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是(A)
A. a=-2 B. a=
C. a=1 D. a=
4.(1)定理是真命题(填“真”或“假”,下同).
“如果ab=0,那么a=0”是假命题.
“如果a=0,那么ab=0” 是真命题.
(2)“如果(a-1)(a-2)=0,那么a=2”是假命题,反例是a=1.
(第5题)
5.如图,若∠1=∠2,则AB∥CD,这是假命题(填“真”或“假”).
6.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.
(1)如果一个数是偶数,那么这个数是4的倍数.
(2)两个负数的差一定是负数.
【解】 (1)假命题.反例:6是偶数,但6不是4的倍数.
(2)假命题.反例:(-5)-(-8)=+3.
7.如图,在△ABC中,∠B=∠C,AD∥BC,则AD平分∠EAC.请用推理的方法说明它是真命题.
(第7题)
【解】 ∵AD∥BC,
∴∠EAD=∠B,
∠CAD=∠C.
又∵∠B=∠C,
∴∠EAD=∠CAD,
∴AD平分∠EAC.
∴该命题是真命题.
B组
8.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5人.”对于甲、乙两人的说法,有下列命题,其中是真命题的是(B)
A. 若甲对,则乙对 B. 若乙对,则甲对
C. 若乙错,则甲错 D. 若甲错,则乙对
【解】 A项,若甲对,即只参加一项的人数大于14人,则两项都参加的人数小于6人,故乙可能对也可能错.
B项,若乙对,即两项都参加的人数小于5人,则两项都参加的人数至多为4人,此时只参加一项的人数至少为16人,故甲对.
C项,若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对也可能错.
D项,若甲错,即只参加一项的人数至多为14人,则两项都参加的人数至少为6人,故乙错.
综上所述,真命题只有“若乙对,则甲对”.
9.有下列命题:①若a+b>0且ab>0,则a>0且b>0;②若a>b且ab>0,则a>b>0;③一个锐角的补角比它的余角小90°.其中属于真命题的是__①__(填序号).
【解】 ①由ab>0,可得a,b同号.
又∵a+b>0,∴a>0且b>0,故本项正确.
②令a=-1,b=-2,则ab=2>0,b<a<0,故本项错误.
③一个锐角的补角比它的余角大90°,故本项错误.
(第10题)
10.如图,GH,MN分别是∠EGB,∠EMD的平分线,若GH∥MN,则AB∥CD.请用推理的方法说明它是真命题.
【解】 ∵GH∥MN,
∴∠EGH=∠EMN.
∵GH,MN分别是∠EGB,∠EMD的平分线,
∴∠EGB=2∠EGH,
∠EMD=2∠EMN,
∴∠EGB=∠EMD,∴AB∥CD.
∴该命题是真命题.
数学乐园
11.如图,∠ABC的两边分别平行于∠DEF的两边,且∠ABC=25°.
(第11题)
(1)∠1=25°,∠2=155°.
(2)请观察∠1,∠2与∠ABC分别有怎样的关系,并由此归纳一个真命题.
【解】 (2)∠1=∠ABC,∠2+∠ABC=180°.真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.