(
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
) (
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
) (
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
)
七年级上册 第四章 代数式(第5节)
一、单选题(共10题;共20分)
1.下列各组中两项是同类项的有:(????)
①mn2与-3n2m?? ②πa2b与? ③23与32?? ④x2与a2
A.?1组???????????????????????????????????????B.?2组???????????????????????????????????????C.?3组???????????????????????????????????????D.?4组
2.与a2b是同类项的是( )
A.?22b???????????????????????????????????B.?﹣3ab2????????????????????????????????????C.?﹣a2b???????????????????????????????????D.?a2c
3.已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是( )
A.?-1?????????????????????????????????????????B.?-2?????????????????????????????????????????C.?-3?????????????????????????????????????????D.?-4
4.下列各式合并同类项结果正确的是(?? )
A.?3x2﹣x2=3????????????????????B.?3a2﹣a2=2a2????????????????????C.?3a2﹣a2=a????????????????????D.?3x2+5x3=8x5
5.若3x2n﹣1ym与﹣5xmy3是同类项,则m,n的值分别是( )
A.?3,﹣2???????????????????????????????B.?﹣3,2????????????????????????????????C.?3,2???????????????????????????????D.?﹣3,﹣2
6.如果3x2myn+1与- x2ym+3是同类项,那么m,n的值为(??? )
A.m=-1,n=3
B.m=1,n=3
C.m=-1,n=-3
D.m=1,n=-3
7.下列运算正确的是(?? )
A.?3x+4y=7xy???????????????????????B.?6y2﹣y2=5???????????????????????C.?b4+b3=b7???????????????????????D.?4x﹣x=3x
8.若3ax+7b4与-a4b2y是同类项,则xy的值为(??? )
A.9 B.-9 C.4 D.-4
9.计算2m2n﹣3nm2的结果为( )
A.?-1????????????????????????????????B.?﹣5m2n????????????????????????????????C.?﹣m2n????????????????????????????????D.?不能合并
10.下列运算正确的是(?? )
A.?a﹣(b﹣c)=a﹣b﹣c???????????????????????????????????????B.?a﹣(b﹣c)=a+b﹣c??
C.?a﹣(b﹣c)=a+b+c?????????????????????????????????????????D.?a﹣(b﹣c)=a﹣b+c
二、填空题(共5题;共5分)
11.若3am﹣1bc2和﹣2a3bn﹣2c2是同类项,则m+n=________?
12.若3amb2与5a3b2是同类项,则m=________.
13.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.
14.计算 =________
15.若单项式2ax﹣2yb3与﹣3a3b2x﹣y是同类项,则x﹣5y的值是________?
三、计算题(共3题;共15分)
16.化简:3a2+2a-4a2-7a
17.先化简再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1, .
18.化简:
四、解答题(共3题;共15分)
19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)
20.先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.
21.化简下列各数前的符号:
(1)﹣[﹣(﹣9)];????????????????
(2)﹣[+(﹣75)].
五、综合题(共4题;共55分)
22.解答题。
(1)先化简,再求值:(a+2)2﹣(a+1)(a﹣1),其中a=﹣ .
(2)已知m﹣n=﹣4,mn=2,求下列代数式的值.
①m2+n2 ②(m+1)(n﹣1)
23.计算。
(1)化简:3x2﹣5x﹣6﹣7x2﹣6x+15
(2)先化简,再求值:﹣2x2﹣2[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣2.
24.下列去括号正确吗?如有错误,请改正.
(1)+(-a-b)=a-b;
(2)5x-(2x-1)-xy=5x-2x+1+xy;
(3)3xy-2(xy-y)=3xy-2xy-2y;
(4)(a+b)-3(2a-3b)=a+b-6a+3b.
25.?? 去括号:
(1)-(3a2-4b-5ab+2b2);
(2)-3(2m-3n-m2);
(3)3x+[4y-(7z+3)].
答案
一、单选题
1.C 2.C 3.A 4.B 5.C 6.B 7.D 8.A 9.C 10.D
二、填空题
11.7 12.3 13.13 14.﹣1 15.6
三、计算题
16.解: ,
=(3-4) +(2-7) ,
= .
17.解:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2)
=5a2+3b2+2a2﹣2b2﹣5a2+3b2
=2a2+4b2 ,
把a=﹣1, 代入得:
2a2+4b2=2+1=3.
18.解:原式=3b+5a﹣2a+4b=3a+7b
四、解答题
19.解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4
=.0+ab﹣4
=ab﹣4
(2)原式=﹣x+4x﹣4﹣9x﹣15
=﹣6x﹣19
20.解:(a+2b)2+(b+a)(b﹣a)
=a2+4ab+4b2+b2﹣a2
=4ab+5b2 ,
当a=﹣1,b=2时,原式=4×(﹣1)×2+5×22=12.
21.解:(1)原式=﹣[+9]=﹣9;
(2)原式=﹣[﹣75]=75.
五、综合题
22.(1)解:原式=a2+4a+4﹣(a2﹣1)
=4a+5,
当a=﹣ 时,原式=4×(﹣ )+5=2
(2)解:①∵m﹣n=﹣4,mn=2,
∴(m﹣n)2=m2﹣2mn+n2=16,
∴m2+n2=16+2×2=20,
②∵mn=2,m﹣n=﹣4,
∴(m+1)(n﹣1)
=mn﹣m+n﹣1
=2﹣(﹣4)﹣1
=5
23.(1)解:3x2﹣5x﹣6﹣7x2﹣6x+15
=(3﹣7)x2+(﹣5﹣6)x+(﹣6+15)
=﹣4x2﹣11x+9;
(2)解:﹣2x2﹣2[3y2﹣2(x2﹣y2)+6]
=﹣2x2﹣2[3y2﹣2x2+2y2+6]
=﹣2x2﹣6y2+4x2﹣4y2﹣12
=2x2﹣10y2﹣12,
当x=﹣1,y=﹣2时
原式=2×(﹣1)2﹣10×(﹣2)2﹣12
=2×1﹣10×4﹣12
=2﹣40﹣12
=﹣50.
24.(1)解:错误,
应该是+(-a-b)=-a-b.
(2)解:错误,
应该是5x-(2x-1)-xy=5x-2x+1-xy.
(3)解:错误,
应该是3xy-2(xy-y)=3xy-2xy+2y.
(4)解:错误,
应该是(a+b)-3(2a-3b)=a+b-6a+9b.
25.(1)解:原式=-3a2+4b+5ab-2b2.
(2)解:原式=-6m+9n+3m2.
(3)解:原式=3x+(4y-7z-3),
=3x+4y-7z-3.
(
1
)