5.5 一次函数的简单应用课时作业(1)

文档属性

名称 5.5 一次函数的简单应用课时作业(1)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2018-11-23 17:01:59

图片预览

文档简介

5.5 一次函数的简单应用课时作业(1)
姓名:__________班级:__________考号:__________
一 、选择题
如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是(  )
A. B. C. D.
小张的爷爷每天见识体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,
然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间(分钟)之间关系
的大致图象是( )
二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气(  )
A.惊蛰 B.小满 C.立秋 D.大寒
如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠ACB=∠DFE=90°,点C落在DE的中点处,且AB的中点M与C、F三点共线,现在让△ABC在直线MF上向右作匀速移动,而△DEF不动,设两个三角形重合部分的面积为y,向右水平移动的距离为x,则y与x的函数关系的图象大致是(  )
如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是(  )
A. B. C. D.
如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为(  )
A. B. C. D.
二 、填空题
已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为   .
甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需____分钟到达终点B.
如图1,在矩形ABCD中BC=5,动点P从点B出发,沿BC﹣CD﹣DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则DC=  ,y的最大值是  .
如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是   .
如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为   .
三 、解答题
如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.
(1)爷爷每天散步多长时间?
(2)爷爷散步时最远离家多少米?
(3)分别计算爷爷离开家后的20分钟内、45分钟内的平均速度.
青春期男、女生身高变化情况不尽相同,如图是小军和小蕊青春期身高的变化情况.
(1)如图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?
(2)A,B两点表示什么?
(3)小蕊10岁时身高多少?
小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题
(假设骑自行车和步行的速度始终保持不变):
(1)从图中可知,小明家离奥体中心_________米,爸爸在出发后________分钟与小明相遇.
(2)求出父亲与小明相遇时离奥体中心的距离?
(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.
5.5 一次函数的简单应用课时作业(1)答案解析
一 、选择题
【考点】函数的图象
【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.
解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,
故选:D.
【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.
【考点】函数的图象
【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.
解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.
故选B.
【点评】?此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.
【考点】函数的图象
【分析】根据函数的图象确定每个节气白昼时长,然后即可确定正确的选项.
解:A、惊蛰白昼时长为11.5小时,高于11小时,不符合题意;
B、小满白昼时长为14.5小时,高于11小时,不符合题意;
C、秋分白昼时长为12.2小时,高于11小时,不符合题意;
D、大寒白昼时长为9.8小时,低于11小时,符合题意,
故选:D.
【点评】考查了函数的图象的知识,解题的关键是能够读懂函数的图象并从中整理出进一步解题的有关信息,难度不大.
【考点】动点问题的函数图象
【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
解:本题的运动过程应分两部分,从开始到两三角形重合,另一部分是从重合到分离;
在第一部分,三角形ABC在直线MF上向右作匀速运动,则重合部分面积的增加速度不断变快;而另一部分面积的减小速度越来越小.
故选C.
【点评】本题考查了动点问题的函数图象.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 
【考点】动点问题的函数图象.
【分析】根据三角形面积得出S△PAB=PE?AB;S△PAB=S△PQB+S△PAQ=QN?PB+PA?MQ,进而得出y=,即可得出答案.
解:连接PQ,作PE⊥AB垂足为E,
∵过Q作QM⊥PA于M,QN⊥PB于N
∴S△PAB=PE?AB;
S△PAB=S△PQB+S△PAQ=QN?PB+PA?MQ,
∵矩形ABCD中,P为CD中点,
∴PA=PB,
∵QM与QN的长度和为y,
∴S△PAB=S△PQB+S△PAQ=QN?PB+PA?MQ=PB(QM+QN)=PB?y,
∴S△PAB=PE?AB=PB?y,
∴y=,
∵PE=AD,
∴PE,AB,PB都为定值,
∴y的值为定值,符合要求的图形为D,
故选:D.
【点评】此题主要考查了动点函数的图象,根据已知得出y=,,再利用PE=AD,PB,AB,PB都为定值是解题关键.
【考点】动点问题的函数图象.
【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.
解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;
②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,
所以S与t成一次函数关系.故排除C.
故选A
【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.
二 、填空题
【考点】函数的图象.
【分析】根据甲30分走完全程10千米,求出甲的速度,再由图中两图象的交点可知,两人在走了5千米时相遇,从而可求出甲此时用了15,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的10分,即可求出答案.
解:因为甲30分走完全程10千米,所以甲的速度是千米/分,
由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,
所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,因为9:10乙才出发,所以乙到达A地的时间为9:20;
故答案为9:20.
【点评】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联. 
【考点】函数的图象
【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
甲的速度是1÷6=千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得
10x+16×=16m,
解得x=千米/分钟,
相遇后乙到达A站还需(16×)÷=2分钟,
相遇后甲到达B站还需(10×)÷=20分钟,
当乙到达终点A时,甲还需20﹣2=18分钟到达终点B,
故答案为:18.
【点评】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.
【考点】动点问题的函数图象.
分析: 首先结合题意可得当点P运动到点C,D之间时,△ABP的面积不变,则可得当BC=5,CD=6,继而求得答案.
解:动点P从点B出发,沿BC、CD、DA运动至点A停止,
∵当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,
∴x=5时,y开始不变,说明BC=5,x=11时,又开始变化,说明CD=11﹣5=6.
∴△ABC的面积为:y=×6×5=15.
故答案为:6,15.
【点评】本题考查了动点问题的函数图象.注意解决本题应首先看清横轴和纵轴表示的量,找到面积不变的开始与结束,得到BC,CD的具体值.
【考点】动点问题的函数图象.
【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
解:根据图象可知点P在BC上运动时,此时BP不断增大,
由图象可知:点P从B向C运动时,BP的最大值为5,
即BC=5,
由于M是曲线部分的最低点,
∴此时BP最小,
即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于图象的曲线部分是轴对称图形,
∴PA=3,
∴AC=6,
∴△ABC的面积为:×4×6=12
故答案为:12
【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型. 
【考点】动点问题的函数图象.
【分析】根据题意,分析P的运动路线,分3个阶段分别讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求得AE,进而可得答案.
解:根据题意,
当P在BC上时,三角形面积增大,结合图2可得,BC=4;
当P在CD上时,三角形面积不变,结合图2可得,CD=3;
当P在DA上时,三角形面积变小,结合图2可得,DA=5;
过D作DE⊥AB于E,
∵AB∥CD,AB⊥BC,
∴四边形DEBC是矩形,
∴EB=CD=3,DE=BC=4,AE===3,
∴AB=AE+EB=3+3=6,
故答案为:6.
【点睛】本题考查了动点问题的函数图象、分段函数等,能够识图并且能利用分类讨论的方法进行解答是关键.
三 、解答题
【考点】函数的图象.
【分析】(1)根据图象可以看出45分钟后爷爷李家的距离为零,说明回到了家中,故爷爷每天散步45分钟;
(2)根据图象可直接得到答案,爷爷最远时离家900米;
(3)利用路程÷时间=速度进行计算即可.
解:(1)45分钟;
(2)900米;
(3)20分钟内的平均速度为900÷20=45(米/分),
45分钟内的平均速度为900×2÷45=40(米/分).
【点评】此题主要考查了看图象,关键是说先要看懂图象的横纵坐标所表示的意义,然后再进行解答. 
【考点】函数的图象
【分析】(1)根据横坐标与纵坐标表示的量解答;
(2)根据交点的纵坐标相等可知二人身高相等;
(3)根据平面直角坐标系确定横坐标为10时的身高值即可.
解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高;
(2)A点表示小军和小蕊在11岁半时身高都是143厘米,B点表示小军和小蕊在15岁时身高都是156厘米;
(3)小蕊10岁时身高127厘米.
【点睛】 本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的解决.
【考点】函数的概念;函数的图象
【分析】(1)根据图象和函数的定义可以解答本题;
(2)①根据函数图象可以解答本题;
②根据函数图象中的数据可以解答本题.
解:(1)由图象可知,
对于每一个摆动时间t,h都有唯一确定的值与其对应,
∴变量h是关于t的函数;
(2)①由函数图象可知,
当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;
②由图象可知,
秋千摆动第一个来回需2.8s.
【点评】本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答.
【考点】函数的图象.
【分析】(1)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;
(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15?x+3x?15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;
(3)由(2)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间==5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.
解:(1)∵O点与A点相距3600米,
∴小明家离体育馆有3600米,
∵从点O点到点B用了15分钟,
∴父子俩在出发后15分钟相遇;
(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,
根据题意得15?x+3x?15=3600,
解得x=60米/分,
∴15x=15×60=900(米)
即父亲与小明相遇时距离体育馆还有900米;
(3)∵从B点到O点的速度为3x=180米/秒,
∴从B点到O点的所需时间==5(分),
而小明从体育馆到点B用了15分钟,
∴小明从点O到点B,再从点B到点O需15分+5分=20分,
∵小明从体育馆出发取票时,离比赛开始还有25分钟,
∴小明能在比赛开始之前赶回体育馆.
故答案为:3600,15.
【点评】本题考查了函数图象:函数图象反映两个变量之间的变化情况,根据图象提供得信息得到实际问题中的相关的量,然后利用这些量解决问题.