第2章 一元二次方程单元测试卷(含解析)

文档属性

名称 第2章 一元二次方程单元测试卷(含解析)
格式 zip
文件大小 1.1MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-01-22 10:19:54

图片预览

文档简介

第2章 一元二次方程单元测试卷
 
一.选择题(共10小题,3*10=30)
1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为(  )
A.1 B.﹣1 C.1或﹣1 D.
2.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是(  )
A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2
3.下列方程中,一元二次方程共有(  )个
①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.
A.1 B.2 C.3 D.4
4.已知下面三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰好有一个相同的实数根a,则a+b+c的值为(  )
A.0 B.1 C.3 D.不确定
5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是(  )
A.x1=﹣6,x2=﹣1 B.x1=0,x2=5
C.x1=﹣3,x2=5 D.x1=﹣6,x2=2
6.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
7.已知a是一元二次方程x2﹣x﹣1=0较大的根,则下面对a的估计正确的是(  )
A.0<a<1 B.1<a<1.5 C.1.5<a<2 D.2<a<3
8.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(  )
A.1一定不是关于x的方程x2+bx+a=0的根
B.0一定不是关于x的方程x2+bx+a=0的根
C.1和﹣1都是关于x的方程x2+bx+a=0的根
D.1和﹣1不都是关于x的方程x2+bx+a=0的根
9.已知(m为任意实数),则P、Q的大小关系为(  )
A.P>Q B.P=Q C.P<Q D.不能确定
10.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有(  )
A.(180+x﹣20)(50﹣)=10890
B.(x﹣20)(50﹣)=10890
C.x(50﹣)﹣50×20=10890
D.(x+180)(50﹣)﹣50×20=10890 
二.填空题(共8小题,3*8=24)
11.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=   .
12.方程3x2=5x+2的二次项系数为   ,一次项系数为   .
13.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=   .
14.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为   .
15.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为   .
16.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为   .
17.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为   .
18.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x=   . 
三.解答题(共7小题,46分)
19.(6分)解方程
(1)6x2﹣x﹣12=0(用配方法)
(2)(x+4)2=5(x+4)
20.(6分)已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)给k取一个负整数值,解这个方程.
21.(6分)一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式.
22.(6分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,问他降价多少元时,才能使每天所赚的利润最大?并求出最大利润.
23.(6分)先阅读,再解题
解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所 原方程的解为x1=2,x2=5
请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.
24.(8分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程”必有实数根;
(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.
25.(8分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?
 

参考答案与试题解析
 
一.选择题(共10小题)
1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为(  )
A.1 B.﹣1 C.1或﹣1 D.
【分析】根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.
【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,
解得:a=﹣1.
故选:B.
【点评】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.
2.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是(  )
A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2
【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.
【解答】解:由方程x(x+2)=5(x﹣2),得
x2﹣3x+10=0,
∴a、b、c的值分别是1、﹣3、10;
故选:A.
【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
3.下列方程中,一元二次方程共有(  )个
①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.
A.1 B.2 C.3 D.4
【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.
【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;
②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;
③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;
④﹣x2=0,符合一元二次方程的定义;
⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;
⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.
一元二次方程共有2个.
故选:B.
【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
4.已知下面三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰好有一个相同的实数根a,则a+b+c的值为(  )
A.0 B.1 C.3 D.不确定
【分析】把x=a代入3个方程得出a?a2+ba+c=0,ba2+ca+a=0,ca2+a?a+b=0,3个方程相加即可得出(a+b+c)(a2+a+1)=0,即可求出答案.
【解答】解:把x=a代入ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0得:
a?a2+ba+c=0,ba2+ca+a=0,ca2+a?a+b=0,
相加得:(a+b+c)a2+(b+c+a)a+(a+b+c)=0,
(a+b+c)(a2+a+1)=0,
∵a2+a+1=(a+)2+>0,
∴a+b+c=0,
故选:A.
【点评】本题考查了一元二次方程的解,使方程左右两边相等的未知数的值叫方程的解.
5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是(  )
A.x1=﹣6,x2=﹣1 B.x1=0,x2=5
C.x1=﹣3,x2=5 D.x1=﹣6,x2=2
【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,x2=5.
【解答】解:解方程m(x+h)2+k=0(m,h,k均为常数,m≠0)得x=﹣h±,
而关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,
所以﹣h﹣=﹣3,﹣h+=2,
方程m(x+h﹣3)2+k=0的解为x=3﹣h±,
所以x1=3﹣3=0,x2=3+2=5.
故选:B.
【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.
6.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
【分析】表示出AD的长,利用勾股定理求出即可.
【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,
设AD=x,根据勾股定理得:(x+)2=b2+()2,
整理得:x2+ax=b2,
则该方程的一个正根是AD的长,
故选:B.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
7.已知a是一元二次方程x2﹣x﹣1=0较大的根,则下面对a的估计正确的是(  )
A.0<a<1 B.1<a<1.5 C.1.5<a<2 D.2<a<3
【分析】先求出方程的解,再求出的范围,最后即可得出答案.
【解答】解:解方程x2﹣x﹣1=0得:x=,
∵a是方程x2﹣x﹣1=0较大的根,
∴a=,
∵2<<3,
∴3<1+<4,
∴<<2,
故选:C.
【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.
8.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(  )
A.1一定不是关于x的方程x2+bx+a=0的根
B.0一定不是关于x的方程x2+bx+a=0的根
C.1和﹣1都是关于x的方程x2+bx+a=0的根
D.1和﹣1不都是关于x的方程x2+bx+a=0的根
【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.
【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,
∴,
∴b=a+1或b=﹣(a+1).
当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;
当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.
∵a+1≠0,
∴a+1≠﹣(a+1),
∴1和﹣1不都是关于x的方程x2+bx+a=0的根.
故选:D.
【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
9.已知(m为任意实数),则P、Q的大小关系为(  )
A.P>Q B.P=Q C.P<Q D.不能确定
【分析】可令Q﹣P,将所得代数式配成完全平方式,再根据非负数的性质来判断所得代数式的符号,进而得出P、Q的大小关系.
【解答】解:由题意,知:Q﹣P=m2﹣m﹣m+1=m2﹣m+1=m2﹣m++=(m﹣)2+;
由于(m﹣)2≥0,所以(m﹣)2+>0;
因此Q﹣P>0,即Q>P.
故选:C.
【点评】熟练掌握完全平方公式,并能正确的对代数式进行配方是解答此类题的关键.
10.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有(  )
A.(180+x﹣20)(50﹣)=10890
B.(x﹣20)(50﹣)=10890
C.x(50﹣)﹣50×20=10890
D.(x+180)(50﹣)﹣50×20=10890
【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.
【解答】解:设房价定为x元,
根据题意,得(x﹣20)(50﹣)=10890.
故选:B.
【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.
 
二.填空题(共8小题)
11.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= 1 .
【分析】根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.
【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,
∴a+1≠0且a2﹣1=0,
∴a=1.
故答案为:1.
【点评】本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.
12.方程3x2=5x+2的二次项系数为 3 ,一次项系数为 ﹣5 .
【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【解答】解:∵3x2=5x+2的一般形式为3x2﹣5x﹣2=0,∴二次项系数为3,一次项系数为﹣5.
【点评】此题主要考查确定一元二次方程的各项系数的方法.要求一元二次方程的系数首先必须把方程化成一般形式,才能确定各项系数.
13.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则= 4 .
【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.
【解答】解:由题意两根不相等,
∵x2=,
∴x=±,
∴方程的两个根互为相反数,
∴m+1+2m﹣4=0,解得m=1,
∴一元二次方程ax2=b的两个根分别是2与﹣2,
∴=2,
∴=4.
故答案为:4.
【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.
14.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为 1 .
【分析】根据题意列出方程,解方程即可.
【解答】解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,
整理得,3x+3=6,
解得,x=1,
故答案为:1.
【点评】本题考查的是一元二次方程的解法,根据题意正确得到方程是解题的关键.
15.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为 2 .
【分析】根据根与系数的关系及一元二次方程的解可得出x12﹣4x1=﹣2、x1x2=2,将其代入x12﹣4x1+2x1x2中即可求出结论.
【解答】解:∵一元二次方程x2﹣4x+2=0的两根为x1、x2,
∴x12﹣4x1=﹣2,x1x2=2,
∴x12﹣4x1+2x1x2=﹣2+2×2=2.
故答案为:2.
【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.
16.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为 16 .
【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.
【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,
∵3<第三边的边长<9,
∴第三边的边长为7.
∴这个三角形的周长是3+6+7=16.
故答案为:16.
【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
17.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为 x(x﹣1)=21 .
【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
x(x﹣1)=21,
故答案为:x(x﹣1)=21.
【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.
18.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x= ﹣3 .
【分析】根据题意列出方程x2+6x+3=5,即x2+6x﹣2=0,公式法求解可得.
【解答】解:根据题意,得:x2+6x+3=5,
即x2+6x﹣2=0,
∵a=1,b=6,c=﹣2,
∴△=36﹣4×1×(﹣2)=44>0,
则x==﹣3,
故答案为:﹣3.
【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
 
三.解答题(共7小题)
19.(1)6x2﹣x﹣12=0(用配方法)
(2)(x+4)2=5(x+4)
【分析】(1)先把二次系数化为1得到x2﹣x=2,两边加上的平方后得到(x﹣)2=,然后利用直接开平方法求解;
(2)先移项得到(x+4)2﹣5(x+4)=0,方程左边分解得(x+4)(x+4﹣5)=0,原方程化为x+4=0或x+4﹣5=0,然后解一次方程即可.
【解答】解:(1)x2﹣x=2,
x2﹣x+()2=2+()2,
∵(x﹣)2=,
∴x﹣=±,
∴x1=,x2=﹣;
(2)∵(x+4)2﹣5(x+4)=0,
∴(x+4)(x+4﹣5)=0,
∴x+4=0或x+4﹣5=0,
∴x1=﹣4,x2=1.
【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.也考查了配方法解一元二次方程.
20.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)给k取一个负整数值,解这个方程.
【分析】(1)利用判别式的意义得到△=(﹣2)2﹣4(﹣k﹣2)>0,然后解不等式即可;
(2)在(1)中的k的范围内取﹣2,方程变形为x2﹣2x=0,然后利用因式分法解方程即可.
【解答】解:(1)根据题意得△=(﹣2)2﹣4(﹣k﹣2)>0,
解得k>﹣3;
(2)取k=﹣2,则方程变形为x2﹣2x=0,解得x1=0,x2=2.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
21.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式.
【分析】首先表示出无盖长方体盒子的底面长为(4﹣2x)dm,宽为(3﹣2x)dm再根据长方形的面积可得方程(4﹣2x)(3﹣2x)=4×3×.
【解答】解:由题意得:无盖长方体盒子的底面长为(4﹣2x)dm,宽为(3﹣2x)dm,由题意得,
(4﹣2x)(3﹣2x)=4×3×,
整理得:2x2﹣7x+3=0,
【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.
22.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,问他降价多少元时,才能使每天所赚的利润最大?并求出最大利润.
【分析】设每件衬衫应降价x元,利润为w元,由于每件衬衫每降价1元,商场平均每天可多售出2件,所以降价x元后每天可以售出:(20+2x)件,此时每件盈利:(40﹣x)元,每天盈利w=(20+2x)(40﹣x),求出极值即可得出答案.
【解答】解:设每件衬衫应降价x元,利润为w元,
根据题意,商场降价后每天盈利=每件的利润×卖出的件数,
则有w=(20+2x)(40﹣x)
=﹣2x2+60x+800
=﹣2(x﹣15)2+1250
即当x=15时,w有最大值,为1250,
答:每件衬衫应降价15元,可获得最大利润,最大利润为1250.
【点评】此题主要考查了由实际问题抽象出一元二次方程,根据降价后销量的变化得出等式方程是解题关键.
23.先阅读,再解题
解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所 原方程的解为x1=2,x2=5
请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.
【分析】把3x﹣5看作一个整体,设y=3x﹣5,把原方程转化为y2+4y+3=0,求得方程的解,进一步代入求得原方程的解.
【解答】解:设y=3x﹣5,
则原方程转化为y2+4y+3=0,
解得:y1=﹣1;y2=﹣3,
当y=﹣1时,即3x﹣5=﹣1,解得x=,
当y=﹣3时,即3x﹣5=﹣3,解得x=,
所以原方程的解为x1=,x2=.
【点评】此题考查换元法解一元二次方程,掌握整体代换的思想是解决问题的关键.
24.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程”必有实数根;
(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.
【分析】(1)直接找一组勾股数代入方程即可;
(2)通过判断根的判别式△的正负来证明结论;
(3)利用根的意义和勾股定理作为相等关系先求得c的值,根据完全平方公式求得ab的值,从而可求得面积.
【解答】(1)解:当a=3,b=4,c=5时
勾系一元二次方程为3x2+5x+4=0;
(2)证明:根据题意,得
△=(c)2﹣4ab=2c2﹣4ab
∵a2+b2=c2
∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0
即△≥0
∴勾系一元二次方程必有实数根;
(3)解:当x=﹣1时,有a﹣c+b=0,即a+b=c
∵2a+2b+c=6,即2(a+b)+c=6
∴3c=6
∴c=2
∴a2+b2=c2=4,a+b=2
∵(a+b)2=a2+b2+2ab
∴ab=2
∴S△ABC=ab=1.
【点评】此类题目要读懂题意,根据题目中所给的材料结合勾股定理和根的判别式解题.
25.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?
【分析】(1)设经过x秒,使△PBQ的面积等于8cm2,根据等量关系:△PBQ的面积等于8cm2,列出方程求解即可;
(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,根据面积之间的等量关系和判别式即可求解;
(3)分三种情况:①点P在线段AB上,点Q在线段CB上(0<x<4);②点P在线段AB上,点Q在射线CB上(4<x<6);③点P在射线AB上,点Q在射线CB上(x>6);进行讨论即可求解.
【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有
(6﹣x)?2x=8,
解得x1=2,x2=4,
经检验,x1,x2均符合题意.
故经过2秒或4秒,△PBQ的面积等于8cm2;
(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有
△ABC的面积=×6×8=24,
(6﹣y)?2y=12,
y2﹣6y+12=0,
∵△=b2﹣4ac=36﹣4×12=﹣12<0,
∴此方程无实数根,
∴线段PQ不能否将△ABC分成面积相等的两部分;
(3)①点P在线段AB上,点Q在线段CB上(0<x<4),
设经过m秒,依题意有
(6﹣m)(8﹣2m)=1,
m2﹣10m+23=0,
解得m1=5+,m2=5﹣,
经检验,m1=5+不符合题意,舍去,
∴m=5﹣;
②点P在线段AB上,点Q在射线CB上(4<x<6),
设经过n秒,依题意有
(6﹣n)(2n﹣8)=1,
n2﹣10n+25=0,
解得n1=n2=5,
经检验,n=5符合题意.
③点P在射线AB上,点Q在射线CB上(x>6),
设经过k秒,依题意有
(k﹣6)(2k﹣8)=1,
k2﹣10k+23=0,
解得k1=5+,k2=5﹣,
经检验,k1=5﹣不符合题意,舍去,
∴k=5+;
综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.
【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意分类思想的运用.