中小学教育资源及组卷应用平台
绝密★启用前
浙教版八下同步练习第二章一元二次方程
2.4 一元二次方程根与系数的关系
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分
一.选择题(共8小题)
1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2 B.1 C.2 D.0
2.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是( )
A. B.﹣ C.﹣ D.
3.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
4.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是( )
A.2 B.﹣1 C.2或﹣1 D.不存在
5.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是( )
A.﹣1 B.±2 C.2 D.﹣2
6.如果关于x的一元二次方程x2+3x﹣7=0的两根分别为α,β,则α2+4α+β=( )
A.4 B.10 C.﹣4 D.﹣10
7.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是( )
A.3或﹣1 B.3 C.1 D.﹣3或1
8.已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+3=0的两实数根为x1,x2,设t=,则t的最大值为( )
A.﹣2 B.2 C.﹣4 D.4
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分
二.填空题(共6小题)
9.设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .
10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是 .
11.若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= .
12.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是 .
13.我们已探究过一元二次方程的根与系数有如下关系:方程ax2+bx+c=0(a≠0)的两个根是x1,x2,则x1+x2=,x1?x2=,若x1,x2是一元二次方程x2﹣4x+2=0的两个根,则(x1﹣2)(x2﹣2)的值等于 .
14.设m,n是一元二次方程x2﹣2018x+1=0的两个实数根,则代数式2017m2+2018n2﹣2018n﹣2017×20182的值是 .
评卷人 得 分
三.解答题(共6小题)
15.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
16.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.
(1)求m的取值范围;
(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
17.关于x的方程(k﹣1)x2+2kx+2=0.
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.
18.已知一元二次方程x2﹣2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.
(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.
20.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.
参考答案与试题解析
一.选择题(共8小题)
1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2 B.1 C.2 D.0
【分析】根据根与系数的关系可得出x1x2=0,此题得解.
【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,
∴x1x2=0.
故选:D.
【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
2.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是( )
A. B.﹣ C.﹣ D.
【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.
【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,
∴α+β=﹣,αβ=﹣3,
∴+====﹣.
故选:C.
【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.
3.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.
【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
∴x1+x2=﹣b,
x1x2=﹣3,
则x1+x2﹣3x1x2=5,
﹣b﹣3×(﹣3)=5,
解得:b=4.
故选:A.
【点评】此题主要考查了根与系数的关系,正确得出x1+x2=﹣b,x1x2=﹣3是解题关键.
4.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是( )
A.2 B.﹣1 C.2或﹣1 D.不存在
【分析】先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.
【解答】解:∵关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,
∴,
解得:m>﹣1且m≠0.
∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,
∴x1+x2=,x1x2=,
∵+=4m,
∴=4m,
∴m=2或﹣1,
∵m>﹣1,
∴m=2.
故选:A.
【点评】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.
5.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是( )
A.﹣1 B.±2 C.2 D.﹣2
【分析】根据一元二次方程根与系数的关系列出方程求解即可.
【解答】解:设x1,x2是关于x的一元二次方程x2+(k2﹣4)x+k+1=0的两个实数根,且两个实数根互为相反数,则
x1+x2==﹣(k2﹣4)=0,即k=±2,
当k=2时,方程无解,故舍去.
故选:D.
【点评】本题考查的是根与系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.
6.如果关于x的一元二次方程x2+3x﹣7=0的两根分别为α,β,则α2+4α+β=( )
A.4 B.10 C.﹣4 D.﹣10
【分析】根据一元二次方程的解结合根与系数的关系可得出α2+3α=7、α+β=﹣3,将其代入α2+4α+β=(α2+3α)+(α+β)中即可求出结论.
【解答】解:∵关于x的一元二次方程x2+3x﹣7=0的两根分别为α、β,
∴α2+3α=7,α+β=﹣3,
∴α2+4α+β=(α2+3α)+(α+β)=7﹣3=4.
故选:A.
【点评】本题考查了一元二次方程的解以及根与系数的关系,牢记两根之和等于﹣是解题的关键.
7.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是( )
A.3或﹣1 B.3 C.1 D.﹣3或1
【分析】由方程的系数结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据根与系数的关系结合+=﹣1即可得出关于m的分式方程,经检验后即可得出结论.
【解答】解:∵方程x2+(2m+3)x+m2=0的两个不相等的实数根,
∴△=(2m+3)2﹣4m2=12m+9>0,
∴m>﹣.
∵α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,
∴α+β=﹣2m﹣3,α?β=m2.
∵+==﹣=﹣1,
∴m2﹣2m﹣3=(m﹣3)(m+1)=1,
解得:m=3或m=﹣1(舍去),
经检验可知:m=3是分式方程﹣=﹣1的解.
故选:B.
【点评】本题考查了根的判别式以及根与系数的关系,根据根与系数的关系结合+=﹣1找出关于m的分式方程是解题的关键.
8.已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+3=0的两实数根为x1,x2,设t=,则t的最大值为( )
A.﹣2 B.2 C.﹣4 D.4
【分析】根据根与系数的关系可得出x1+x2=2(k﹣1),将其代入t=中可得出t=2﹣,由方程有实数根,利用根的判别式△≥0可求出k的取值范围,进而即可求出t的最大值.
【解答】解:∵关于x的一元二次方程x2﹣2(k﹣1)x+k2+3=0的两实数根为x1、x2,
∴x1+x2=2(k﹣1),
∴t===2﹣.
∵关于x的一元二次方程x2﹣2(k﹣1)x+k2+3=0有实数根,
∴△=[﹣2(k﹣1)]2﹣4(k2+3)=﹣8k﹣8≥0,
解得:k≤﹣1,
∴t=2﹣≤4.
故选:D.
【点评】本题考查了根与系数的关系以及根的判别式,利用方程有实数根求出k的取值范围是解题的关键.
二.填空题(共6小题)
9.设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ﹣2 ,x2= 3 .
【分析】根据根与系数的关系结合x1+x2=1可得出m的值,将其代入原方程,再利用因式分解法解一元二次方程,即可得出结论.
【解答】解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,
∴m=1,
∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,
解得:x1=﹣2,x2=3.
故答案为:﹣2;3.
【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,利用根与系数的关系求出m的值是解题的关键.
10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是 6 .
【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.
【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,
∴=+====6.
故答案为:6.
【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.
11.若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= ﹣3 .
【分析】根据根与系数的关系即可求出答案.
【解答】解:由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2
∴x1+x2+x1x2=﹣3
故答案为:﹣3
【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.
12.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是 3<m≤5 .
【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.
【解答】解:依题意得:,
解得3<m≤5.
故答案是:3<m≤5.
【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.
13.我们已探究过一元二次方程的根与系数有如下关系:方程ax2+bx+c=0(a≠0)的两个根是x1,x2,则x1+x2=,x1?x2=,若x1,x2是一元二次方程x2﹣4x+2=0的两个根,则(x1﹣2)(x2﹣2)的值等于 ﹣2 .
【分析】根据根与系数的关系可得出x1+x2=4、x1?x2=2,将其代入(x1﹣2)(x2﹣2)=x1?x2﹣2(x1+x2)+4中即可求出结论.
【解答】解:∵x1、x2是一元二次方程x2﹣4x+2=0的两个根,
∴x1+x2=4,x1?x2=2,
∴(x1﹣2)(x2﹣2)=x1?x2﹣2(x1+x2)+4=2﹣2×4+4=﹣2.
故答案为:﹣2.
【点评】本题考查了根与系数的关系,牢记两根之和等于、两根之积等于是解题的关键.
14.设m,n是一元二次方程x2﹣2018x+1=0的两个实数根,则代数式2017m2+2018n2﹣2018n﹣2017×20182的值是 ﹣4035 .
【分析】根据根与系数的关系得出“m+n=2018,mn=1”,再将2017m2+2018n2﹣2018n﹣2017×20182变形为只含m+n与mn的代数式,代入数据即可得出结论.
【解答】解:∵m、n是关于x的一元二次方程x2﹣2018x+1=0的两个实数根,
∴m+n=2018,mn=1,n2﹣2018n+1=0,
∴2017m2+2018n2﹣2018n﹣2017×20182
=2017[(m+n)2﹣2mn]+n2﹣2018n﹣2017×20182
=2017×(20182﹣2)﹣1﹣2017×20182
=2017×20182﹣2017×2﹣1﹣2017×20182
=﹣4035
故答案为:﹣4035.
【点评】本题考查了根与系数的关系,解题的关键是找出2017m2+2018n2﹣2018n﹣2017×20182=2017[(m+n)2﹣2mn]+n2﹣2018n﹣2017×20182.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再将代数式变形为只含两根之和与两根之积的形式是关键.
三.解答题(共6小题)
15.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
【分析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;
(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1?x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1?x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.
【解答】解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,
∴△=22﹣4×1×2m=4﹣8m>0,
解得:m<.
∴m的取值范围为m<.
(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
∴x1+x2=﹣2,x1?x2=2m,
∴x12+x22=﹣2x1?x2=4﹣4m=8,
解得:m=﹣1.
当m=﹣1时,△=4﹣8m=12>0.
∴m的值为﹣1.
【点评】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.
16.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.
(1)求m的取值范围;
(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.
【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,
解得m≤4;
(2)根据题意得x1+x2=6,x1x2=2m+1,
而2x1x2+x1+x2≥20,
所以2(2m+1)+6≥20,解得m≥3,
而m≤4,
所以m的范围为3≤m≤4.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根与系数的关系.
17.关于x的方程(k﹣1)x2+2kx+2=0.
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.
【分析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;
(2)由韦达定理得x1+x2=﹣,x1x2=,代入到+x1+x2=2中,可求得k的值.
【解答】解:(1)当k=1时,原方程可化为2x+2=0,解得:x=﹣1,此时该方程有实根;
当k≠1时,方程是一元二次方程,
∵△=(2k)2﹣4(k﹣1)×2
=4k2﹣8k+8
=4(k﹣1)2+4>0,
∴无论k为何实数,方程总有实数根,
综上所述,无论k为何实数,方程总有实数根.
(2)由根与系数关系可知,x1+x2=﹣,x1x2=,
若S=2,则+x1+x2=2,即+x1+x2=2,
将x1+x2、x1x2代入整理得:k2﹣3k+2=0,
解得:k=1(舍)或k=2,
∴S的值能为2,此时k=2.
【点评】本题主要考查一元二次方程的定义、根的判别式、根与系数的关系,熟练掌握方程的根与判别式间的联系,及根与系数关系是解题的关键.
18.已知一元二次方程x2﹣2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;
(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.
【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,
∴△=(﹣2)2﹣4m≥0,
解得m≤1;
(2)由两根关系可知,x1+x2=2,x1?x2=m,
解方程组,
解得,
∴m=x1?x2=.
【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.
19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.
(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.
【分析】(1)整理根的判别式,得到它是非负数即可.
(2)两实数根互为相反数,让﹣=0即可求得k的值.
(3)分b=c,b=a两种情况做.
【解答】证明:(1)∵△=(2k+1)2﹣16(k﹣)=(2k﹣3)2≥0,
∴方程总有实根;
解:(2)∵两实数根互为相反数,
∴x1+x2=2k+1=0,
解得k=﹣0.5;
(3)①当b=c时,则△=0,
即(2k﹣3)2=0,
∴k=,
方程可化为x2﹣4x+4=0,
∴x1=x2=2,
而b=c=2,
∴b+c=4=a不适合题意舍去;
②当b=a=4,则42﹣4(2k+1)+4(k﹣)=0,
∴k=,
方程化为x2﹣6x+8=0,
解得x1=4,x2=2,
∴c=2,
C△ABC=10,
当c=a=4时,同理得b=2,
∴C△ABC=10,
综上所述,△ABC的周长为10.
【点评】一元二次方程总有实数根应根据判别式来做,两根互为相反数应根据根与系数的关系做,等腰三角形的周长应注意两种情况,以及两种情况的取舍.
20.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.
【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;
(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.
【解答】解:(1)∵方程有两个不相等的实数根,
∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,
解得:k>;
(2)存在,
∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,
∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,
代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,
解得:4k﹣11=5,
解得:k=4.
【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/2 14:05:39;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)