中小学教育资源及组卷应用平台
绝密★启用前
浙教版八下同步练习第三章数据分析初步
3.2 中位数和众数
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分
一.选择题(共8小题)
1.一组数据2,4,6,4,8的中位数为( )
A.2 B.4 C.6 D.8
2.某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)
35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是( )
A.42、42 B.43、42 C.43、43 D.44、43
3.已知一组数据6,8,10,x的中位数与平均数相等,这样的x有( )
A.1个 B.2个
C.3个 D.4个以上(含4个)
4.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )
A.90,96 B.92,96 C.92,98 D.91,92
5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm 23 23.5 24 24.5 25
销售量/双 1 3 3 6 2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
6.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩 45 46 47 48 49 50
人数 1 2 4 2 5 1
这此测试成绩的中位数和众数分别为( )
A.47,49 B.47.5,49 C.48,49 D.48,50
7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( )
A.7,7 B.8,7.5 C.7,7.5 D.8,6.5
8.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为( )
比赛日期 2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣28 2015﹣5﹣20 2015﹣5﹣31
比赛地点 英国伦敦 中国北京 韩国仁川 中国北京 美国尤金
成绩(秒) 10.19 10.06 10.10 10.06 9.99
A.10.06秒,10.06秒 B.10.10秒,10.06秒
C.10.06秒,10.10秒 D.10.08秒,10.06秒
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分
二.填空题(共6小题)
9.小明随机调查了本班5名同学的家庭一个月的平均用水量(单位:t),记录如下:9,11,8,6,15,则这组数据的中位数是 .
10.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和最小为 .
11.一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为 .
12.某班40名学生的英语口语听力模拟测试成绩如下表:
考试成绩/分 30 29 28 27 26
学生数/人 3 15 13 6 3
则该班英语口语听力模拟考试成绩的众数比中位数多 分.
13.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数是 小时,中位数是 小时.
14.五个正整数的中位数是5,唯一的众数是7,且这五个正整数的平均数为4.8,则这五个正整数中小于5的是 .
评卷人 得 分
三.解答题(共6小题)
15.为了了解某班同学的身高情况,随机抽取其中10位同学,量得他们的身高(单位:cm)如下:
148,150,150,151,152,152,152,153,154,158
这组数据的众数是多少?中位数是多少?平均数是多少?
16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
17.某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:
14,23,16,25,23,28,26,27,23,25
(1)这组数据的众数为 ,中位数为 ;
(2)计算这10个班次乘车人数的平均数;
(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?
18.为了了解开展“尊敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用的时间,得到一组数据,并绘制成下表,请根据下表完成下列各题:
每周做家务的时间(小时) 0 1 2 3 4 合计
人数 2 6 20 5 50
(1)填写表中未完成的部分;
(2)该班学生每周做家务的平均时间是 小时,这组数据的中位数是 ,众数是 ;
(3)请你根据(2)的结果,用一句话谈谈自己的感受.
19.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
使用次数 0 1 2 3 4 5
人数 11 15 23 28 18 5
(1)这天部分出行学生使用共享单车次数的中位数是 ,众数是 ,该中位数的意义是 ;
(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)
(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?
20.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.
收集数据:
从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:
千家店镇:120 115 100 100 95 85 80 70 50 50 50 45
永宁 镇:110 90 105 80 90 85 90 60 90 45 70 60
整理、描述数据:
空气质量
按如表整理、描述这两镇空气污染指数的数据:
空气质量为优 空气质量为良 空气质量为轻微污染
千家店镇 4 6 2
永宁 镇
(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)
分析数据:
两镇的空气污染指数的平均数、中位数、众数如下表所示;
城镇 平均数 中位数 众数
千家店 80 50
永 宁 81.3 87.5
请将以上两个表格补充完整;
得出结论:可以推断出 镇这一年中环境状况比较好,理由为 .(至少从两个不同的角度说明推断的合理性)
参考答案与试题解析
一.选择题(共8小题)
1.一组数据2,4,6,4,8的中位数为( )
A.2 B.4 C.6 D.8
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,
故这组数据的中位数是4.
故选:B.
【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
2.某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)
35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是( )
A.42、42 B.43、42 C.43、43 D.44、43
【分析】根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.
【解答】解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,
则这组数据的中位数为:=43,
=(35+38+42+44+40+47+45+45)=42,
故选:B.
【点评】本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.
3.已知一组数据6,8,10,x的中位数与平均数相等,这样的x有( )
A.1个 B.2个
C.3个 D.4个以上(含4个)
【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
【解答】解:(1)将这组数据从大到小的顺序排列为10,8,x,6,
处于中间位置的数是8,x,
那么由中位数的定义可知,这组数据的中位数是(8+x)÷2,
平均数为(10+8+x+6)÷4,
∵数据10,8,x,6,的中位数与平均数相等,
∴(8+x)÷2=(10+8+x+6)÷4,
解得x=8,大小位置与8对调,不影响结果,符合题意;
(2)将这组数据从大到小的顺序排列后10,8,6,x,
中位数是(8+6)÷2=7,
此时平均数是(10+8+x+6)÷4=7,
解得x=4,符合排列顺序;
(3)将这组数据从大到小的顺序排列后x,10,8,6,
中位数是(10+8)÷2=9,
平均数(10+8+x+6)÷4=9,
解得x=12,符合排列顺序.
∴x的值为4、8或12.
故选:C.
【点评】本题结合平均数考查了确定一组数据的中位数的能力.涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
4.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )
A.90,96 B.92,96 C.92,98 D.91,92
【分析】根据中位数,众数的定义即可判断.
【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.
故选:B.
【点评】本题考查众数、中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm 23 23.5 24 24.5 25
销售量/双 1 3 3 6 2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
【分析】利用众数和中位数的定义求解.
【解答】解:这组数据中,众数为24.5,中位数为24.5.
故选:A.
【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.
6.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩 45 46 47 48 49 50
人数 1 2 4 2 5 1
这此测试成绩的中位数和众数分别为( )
A.47,49 B.47.5,49 C.48,49 D.48,50
【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.
【解答】解:49出现的次数最多,出现了5次,所以众数为49,
第8个数是48,所以中位数为48,
故选:C.
【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.
7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( )
A.7,7 B.8,7.5 C.7,7.5 D.8,6.5
【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.
【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);
因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).
故选:C.
【点评】本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.
8.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为( )
比赛日期 2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣28 2015﹣5﹣20 2015﹣5﹣31
比赛地点 英国伦敦 中国北京 韩国仁川 中国北京 美国尤金
成绩(秒) 10.19 10.06 10.10 10.06 9.99
A.10.06秒,10.06秒 B.10.10秒,10.06秒
C.10.06秒,10.10秒 D.10.08秒,10.06秒
【分析】一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.根据定义即可求解.
【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;
而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.
故选:A.
【点评】本题为统计题,考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
二.填空题(共6小题)
9.小明随机调查了本班5名同学的家庭一个月的平均用水量(单位:t),记录如下:9,11,8,6,15,则这组数据的中位数是 9 .
【分析】将5个数排序后找到中间位置的数即可得到正确的答案.
【解答】解:把数据按从小到大排列:6,8,9,11,15共有5个数,最中间一个数为9,所以这组数据的中位数为9.
故答案为:9.
【点评】本题考查了中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.
10.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和最小为 17 .
【分析】根据中位数和众数的定义分析,后面三个数为4,5,5,再讨论前面的两个数,即可求出最小的和.
【解答】解:将这组数据从小到大的顺序排列后,处于中间位置的那个数是中位数即是4;众数是一组数据中出现次数最多的数,
据题意得这组数据有两个为5,另两个为小于4的整数,且不相等,所以最小的两个为1,2.
则可得这组数据最小和可能是1+2+4+5+5=17.
故答案为:17.
【点评】此题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.解此题的关键是理解唯一众数的含义与中位数的意义.
11.一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为 3 .
【分析】根据众数定义可得x=2,再把数据从小到大排列,再确定位置处于中间的数.
【解答】解:一组数据2、4、x、2、4、3、5的众数是2,
则x=2,
从小到大排列:2,2,2,3,4,4,5,
则这组数据的中位数3,
故答案为:3.
【点评】此题主要考查了众数和中位数,关键是掌握两数的定义.
12.某班40名学生的英语口语听力模拟测试成绩如下表:
考试成绩/分 30 29 28 27 26
学生数/人 3 15 13 6 3
则该班英语口语听力模拟考试成绩的众数比中位数多 1 分.
【分析】根据表格的数据求出中位数,找到众数,然后计算即可.
【解答】解:40名学生的成绩,处于中间的是第20和第21两个数,3+15=18<20,3+15+13=31>21,故第20和第21两个数都是28分,所以中位数是28分;29分的有15人是最多的,所以众数是29分,29﹣28=1(分).
故答案是1.
【点评】本题考查了中位数和众数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.所以难度不大.
13.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数是 8 小时,中位数是 9 小时.
【分析】解读统计图,获取信息,根据众数与中位数的定义求解即可.
【解答】解:因为数据8出现了19次,出现次数最多,所以8为众数;
因为有50个数据,所以中位数应是第25个与26个的平均数,在第25位、26位的均是9,所以9为中位数.
故答案为:8;9.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
14.五个正整数的中位数是5,唯一的众数是7,且这五个正整数的平均数为4.8,则这五个正整数中小于5的是 1,4或2,3 .
【分析】设小于5的正整数为a,b,根据五个正整数的平均数为4.8得:=4.8,求得a+b后即可求得本题答案.
【解答】解:设小于5的正整数为a,b,
根据题意得:=4.8,
解得:a+b=5,
∴小于5的两数可以是1,4或2,3,
故答案为:1,4或2,3.
【点评】本题考查了众数及中位数的定义,解题的关键是根据题意得到小于5的两数的和,难度不大.
三.解答题(共6小题)
15.为了了解某班同学的身高情况,随机抽取其中10位同学,量得他们的身高(单位:cm)如下:
148,150,150,151,152,152,152,153,154,158
这组数据的众数是多少?中位数是多少?平均数是多少?
【分析】根据众数、中位数、平均数的定义求解.
【解答】解:这组数据:众数是152cm,
中位数是=152(cm),
平均数是=152(cm).
【点评】本题考查了众数、中位数、平均数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 16 ,众数是 17 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,
故答案是16,17;
(2)=14,
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)200×14=2800
答:该小区居民一周内使用共享单车的总次数为2800次.
【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
17.某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:
14,23,16,25,23,28,26,27,23,25
(1)这组数据的众数为 23 ,中位数为 24 ;
(2)计算这10个班次乘车人数的平均数;
(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?
【分析】(1)根据众数和中位数的概念求解;
(2)根据平均数的概念求解;
(3)用平均数乘以发车班次就是乘客的总人数.
【解答】解:(1)这组数据按从小到大的顺序排列为:14,16,23,23,23,25,25,26,27,28,
则众数为:23,
中位数为:=24;
(2)平均数=(14+16+23+23+23+25+25+26+27+28)=23(人)
答:这10个班次乘车人数的平均数是23人.
(3)60×23=1380(人)
答:在高峰时段从总站乘该路车出行的乘客共有1380人.
故答案为:(1)23,24,(2)23人,(3)1380人.
【点评】本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.
18.为了了解开展“尊敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用的时间,得到一组数据,并绘制成下表,请根据下表完成下列各题:
每周做家务的时间(小时) 0 1 2 3 4 合计
人数 2 6 17 20 5 50
(1)填写表中未完成的部分;
(2)该班学生每周做家务的平均时间是 2.4 小时,这组数据的中位数是 2.5 ,众数是 3 ;
(3)请你根据(2)的结果,用一句话谈谈自己的感受.
【分析】(1)因为总数是50,所以用50减去其他各组人数即可求出答案;
(2)根据平均数、中位数和众数的概念即可求解;
(3)由分析知,学生做家务所用时间普遍偏少,应加强爱劳动,讲卫生等方面的教育.
【解答】解:(1)50﹣(2+6+20+5)=17;
(2)该班学生每周做家务的平均时间是:(0×2+1×6+2×17+3×20+4×5)=×120=2.4;
将这组数据从大到小的顺序排列后中位数是:(2+3)÷2=2.5;
众数是一组数据中出现次数最多的数据,所以众数为3;
(3)学生做家务所用时间普遍偏少,应加强爱劳动,讲卫生等方面的教育.
故答案为17;2.4;2.5;3;
【点评】本题考查了平均数、中位数和众数的概念以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
19.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
使用次数 0 1 2 3 4 5
人数 11 15 23 28 18 5
(1)这天部分出行学生使用共享单车次数的中位数是 3 ,众数是 3 ,该中位数的意义是 表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次) ;
(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)
(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?
【分析】(1)根据中位数和众数的定义求解可得;
(2)根据加权平均数的公式列式计算即可;
(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.
【解答】解:(1)∵总人数为11+15+23+28+18+5=100,
∴中位数为第50、51个数据的平均数,即中位数为=3次,众数为3次,
其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),
故答案为:3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);
(2)=≈2(次),
答:这天部分出行学生平均每人使用共享单车约2次;
(3)1500×=765(人),
答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.
【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
20.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.
收集数据:
从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:
千家店镇:120 115 100 100 95 85 80 70 50 50 50 45
永宁 镇:110 90 105 80 90 85 90 60 90 45 70 60
整理、描述数据:
空气质量
按如表整理、描述这两镇空气污染指数的数据:
空气质量为优 空气质量为良 空气质量为轻微污染
千家店镇 4 6 2
永宁 镇 1 9 2
(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)
分析数据:
两镇的空气污染指数的平均数、中位数、众数如下表所示;
城镇 平均数 中位数 众数
千家店 80 82.5 50
永 宁 81.3 87.5 90
请将以上两个表格补充完整;
得出结论:可以推断出 千家店 镇这一年中环境状况比较好,理由为 千家店镇空气质量优的天数多于永宁镇,千家店镇的污染指数的平均数小于永宁镇或千家店镇空气污染指数的众数是50,属于空气质量优,而永宁镇空气污染指数的众数是90,属于轻微污染. .(至少从两个不同的角度说明推断的合理性)
【分析】首先根据空气污染指数的数据及空气优、良和轻度污染的标准,对永宁镇进行分类并填空,根据众数和平均数的定义,计算出千家店镇的中位数和永宁镇的众数;根据表格的平均数、中位数、众数对两个镇的情况作出一个简单的判断即可.
【解答】解:永宁镇空气质量为优的天数是1天;空气质量为良的天数为9天;空气质量为轻微污染的天数为2天;
故答案为:1,9,2
千家店镇:120 115 100 100 95 85 80 70 50 50 50 45,
其中位于中间的两个数是85和80,所以其中位数为=82.5;
永宁镇的数据中,90出现了三次最多,故其众数为90.
故答案为82.5,90.
千家店镇的环境状况较好.(理由不唯一)
例如:千家店镇空气质量优的天数多于永宁镇,千家店镇的污染指数的平均数小于永宁镇或千家店镇空气污染指数的众数是50,属于空气质量优,而永宁镇空气污染指数的众数是90,属于轻微污染等.
【点评】本题考查的是平均数、众数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/3 4:45:32;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)