3.3 方差和标准差同步练习

文档属性

名称 3.3 方差和标准差同步练习
格式 zip
文件大小 1.4MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-02-24 18:47:48

图片预览

文档简介








中小学教育资源及组卷应用平台


绝密★启用前
浙教版八下同步练习第三章数据分析初步
3.3 方差和标准差
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分

一.选择题(共8小题)
1.已知两个样本﹣﹣甲:2,4,6,8,10,乙:1,3,5,7,9.用S甲2和S乙2分别表示这两个样本的方差,则下列结论正确的是(  )
A.S甲2=S乙2 B.S甲2>S乙2 C.S甲2<S乙2 D.无法确定
2.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是(  )
A.平均数是87 B.中位数是88 C.众数是85 D.方差是230
3.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是(  )

A.S甲2<S乙2 B.S甲2>S乙2 C.S甲2=S乙2 D.无法确定
4.在方差公式中,下列说法不正确的是(  )
A.n是样本的容量 B.xn是样本个体
C.是样本平均数 D.S是样本方差
5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是(  )
A.3,2 B.3,4 C.5,2 D.5,4
6.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是(  )
A.甲 B.乙 C.丙 D.丁
7.已知一组数据的方差为,数据为:﹣1,0,3,5,x,那么x等于(  )
A.﹣2或5.5 B.2或﹣5.5 C.4或11 D.﹣4或﹣11
8.在一化学实验中,因仪器和观察的误差,使得三次实验所得实验数据分别为a1,a2,a3.我们规定该实验的“最佳实验数据”a是这样一个数值:a与各数据a1,a2,a3差的平方和M最小.依此规定,则a=(  )
A.a1+a2+a3 B.
C. D.



第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分

二.填空题(共6小题)
9.数据﹣2、﹣1、0、1、2的方差是   .
10.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是   .
11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是   .
12.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是   .
13.现有甲、乙两个合唱队队员的平均身高为170cm,方差分别是S甲2、S乙2,且S甲2>S乙2,则两个队的队员的身高较整齐的是   .
14.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=   .
评卷人 得 分

三.解答题(共6小题)
15.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B产品单价变化统计表
第一次 第二次 第三次
A产品单价(元/件) 6 5.2 6.5
B产品单价(元/件) 3.5 4 3
并求得了A产品三次单价的平均数和方差:
=5.9,sA2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=
(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了   %
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.

16.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:

根据以上信息,整理分析数据如下:
平均成绩/环 中位数/环 众数/环 方差
甲 a 7 7 1.2
乙 7 b 8 c
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
17.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 7 8 9 7 10 10 9 10 10 10
乙 10 8 7 9 8 10 10 9 10 9
(1)甲队成绩的中位数是   分,乙队成绩的众数是   分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是   队.
18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
班级 平均数(分) 中位数 众数
九(1) 85 85
九(2) 80
(1)根据图示填写上表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.

19.同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图,如图中的数字表示每一级台阶的高度(单位:cm).并且数d、e、e、c、c、d的方差p,数据b、d、g、f、a、h的方差q,(10cm<a<b<c<d<e<f<g<h<20cm,且 p<q),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

20.在“创建全国文明城市”演讲比赛中,学校根据初赛成绩在七、八年级分别选出10名同学参加决赛,这些选手的决赛成绩如图所示:
团体成绩 众数 平均数 方差
七年级     85.7 39.6
八年级     85.7 27.81
根据如图和表提供的信息,解答下列问题:
(1)请你把上边的表格填写完整;
(2)考虑平均数与方差,你认为   年级的团体成绩更好些;
(3)假设在每个年级的决赛选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?请说明理由.




参考答案与试题解析
一.选择题(共8小题)
1.已知两个样本﹣﹣甲:2,4,6,8,10,乙:1,3,5,7,9.用S甲2和S乙2分别表示这两个样本的方差,则下列结论正确的是(  )
A.S甲2=S乙2 B.S甲2>S乙2 C.S甲2<S乙2 D.无法确定
【分析】先求出这组数据的平均数,再根据方差的公式计算.
【解答】解:甲的平均数==6
乙的平均数==5
∴S甲2=[(2﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(10﹣6)2]=8
S乙2=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+((9﹣5)2]=8
∴S甲2=S乙2
故选:A.
【点评】本题考查方差的计算:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].
2.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是(  )
A.平均数是87 B.中位数是88 C.众数是85 D.方差是230
【分析】根据平均数、众数、中位数以及方差的定义进行计算即可.
【解答】解:(75+85+91+85+95+85)÷6=86,故A错误;
按大小顺序排列95,91,85,85,85,75,中间两个数为85,故B错误;
出现了3次,次数最多,故众数是85,故C正确,
S2=[(75﹣86)2+3(85﹣86)2+(91﹣86)2+(95﹣86)2]=38.3,故D错误;
故选:C.
【点评】本题考查了平均数、众数、中位数以及方差,掌握计算方法是解题的关键.
3.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是(  )

A.S甲2<S乙2 B.S甲2>S乙2 C.S甲2=S乙2 D.无法确定
【分析】结合图形,乙的成绩波动比较大,则波动大的方差就大.
【解答】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定,乙的波动较大,则其方差大,
故选:A.
【点评】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4.在方差公式中,下列说法不正确的是(  )
A.n是样本的容量 B.xn是样本个体
C.是样本平均数 D.S是样本方差
【分析】根据方差公式中各个量的含义直接得到答案.
【解答】解;A、n是样本的容量,故本选项正确;
B、xn是样本个体,故本选项正确;
C、是样本平均数,故本选项正确;
D、S2是样本方差,故本选项错误;
故选:D.
【点评】此题考查了方差,掌握方差公式中各个量的含义是本题的关键,是需要识记的知识点.
5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是(  )
A.3,2 B.3,4 C.5,2 D.5,4
【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a﹣2+b﹣2+c﹣2)的值;再由方差为4可得出数据a﹣2,b﹣2,c﹣2的方差.
【解答】解:∵数据a,b,c的平均数为5,
∴(a+b+c)=5,
∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,
∴数据a﹣2,b﹣2,c﹣2的平均数是3;
∵数据a,b,c的方差为4,
∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,
∴a﹣2,b﹣2,c﹣2的方差=[(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]=[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4.
故选:B.
【点评】本题考查的是方差,熟记方差的定义是解答此题的关键.
6.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是(  )
A.甲 B.乙 C.丙 D.丁
【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,
∴S甲2>S乙2>S丙2>S丁2,
故选:D.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7.已知一组数据的方差为,数据为:﹣1,0,3,5,x,那么x等于(  )
A.﹣2或5.5 B.2或﹣5.5 C.4或11 D.﹣4或﹣11
【分析】根据平均数和方差的公式列出关于x,m的方程求解.
【解答】解:数据的平均数为m,m=(﹣1+0+3+5+x),
整理得:m=(7+x)①,
∵s2==[(﹣1﹣m)2+(0﹣m)2+(3﹣m)2+(5﹣m)2+(x﹣m)2]÷5
整理得:5m2﹣8m﹣2mx﹣8+x2=0②,
把①代入②,解得:x=﹣2或5.5.
故选:A.
【点评】本题实质是解二元二次方程组,通过代入法消元后,转化为解一元二次方程.列方程的关键是掌握平均数和方差的公式.
8.在一化学实验中,因仪器和观察的误差,使得三次实验所得实验数据分别为a1,a2,a3.我们规定该实验的“最佳实验数据”a是这样一个数值:a与各数据a1,a2,a3差的平方和M最小.依此规定,则a=(  )
A.a1+a2+a3 B.
C. D.
【分析】根据平均数和方差的概念知,这样的数a应为数据的平均数.
【解答】解:根据题意:要使a与各数据a1,a2,a3差的平方和M最小,这M应是方差;根据方差的定义,a应该为a1,a2,a3的平均数;故a=.
故选:D.
【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.当a=时,方差最小.
二.填空题(共6小题)
9.数据﹣2、﹣1、0、1、2的方差是 2 .
【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.
【解答】解:由题意可得,
这组数据的平均数是:,
∴这组数据的方差是:=2,
故答案为:2.
【点评】本题考查方差,解题的关键是明确方差的计算方法.
10.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是 2 .
【分析】先用平均数是3可得x的值,再结合方差公式计算.
【解答】解:平均数是3=(1+2+3+x+5),
∴x=15﹣1﹣2﹣3﹣5=4,
∴方差是S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=×10=2.
故答案为:2.
【点评】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.
11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是 乙 .
【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,
∴S乙2<S丁2<S甲2<S丙2,
∴二月份白菜价格最稳定的市场是乙;
故答案为:乙.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是 0 .
【分析】确定出a,b,c后,根据方差的公式计算a,b,c的方差
【解答】解:平均数a=(1+2+3+2)÷4=2;
中位数b=(2+2)÷2=2;
众数c=2;
∴a,b,c的方差=[(2﹣2)2+(2﹣2)2+(2﹣2)2]÷3=0.
故答案为:0.
【点评】此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.
13.现有甲、乙两个合唱队队员的平均身高为170cm,方差分别是S甲2、S乙2,且S甲2>S乙2,则两个队的队员的身高较整齐的是 乙 .
【分析】利用方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析得出答案.
【解答】解:∵S甲2>S乙2,
∴两个队的队员的身高较整齐的是:乙.
故答案为:乙.
【点评】此题主要考查了方差的意义,正确理解方差的意义是解题关键.
14.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 30 .
【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
【解答】解:∵S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
∴平均数为3,共10个数据,
∴x1+x2+x3+…+x10=10×3=30,
故答案为:30.
【点评】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
三.解答题(共6小题)
15.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B产品单价变化统计表
第一次 第二次 第三次
A产品单价(元/件) 6 5.2 6.5
B产品单价(元/件) 3.5 4 3
并求得了A产品三次单价的平均数和方差:
=5.9,sA2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=
(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了 25 %
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.

【分析】(1)根据题目提供数据补充折线统计图即可;
(2)分别计算平均数及方差即可;
(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.
【解答】解:(1)如图2所示:

B产品第三次的单价比上一次的单价降低了=25%,
(2)=(3.5+4+3)=3.5,
==,
∵B产品的方差小,
∴B产品的单价波动小;

(3)第四次调价后,对于A产品,这四次单价的中位数为=;
对于B产品,∵m>0,
∴第四次单价大于3,
∵﹣1>,
∴第四次单价小于4,
∴×2﹣1=,
∴m=25.
【点评】本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.
16.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:

根据以上信息,整理分析数据如下:
平均成绩/环 中位数/环 众数/环 方差
甲 a 7 7 1.2
乙 7 b 8 c
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
(2)结合平均数和中位数、众数、方差三方面的特点进行分析.
【解答】解:(1)甲的平均成绩a==7(环),
∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
17.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 7 8 9 7 10 10 9 10 10 10
乙 10 8 7 9 8 10 10 9 10 9
(1)甲队成绩的中位数是 9.5 分,乙队成绩的众数是 10 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 乙 队.
【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.
【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.5分;
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是10分;
故答案为:9.5,10;

(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;

(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队;
故答案为:乙.
【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
班级 平均数(分) 中位数 众数
九(1) 85 85
九(2) 80
(1)根据图示填写上表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.

【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)在平均数相同的情况下,中位数高的成绩较好;
(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“等于差方的平均数”)
【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
九(2)班5名选手的复赛成绩为:70、100、100、75、80,
九(1)的平均数为(75+80+85+85+100)÷5=85,
九(1)的中位数为85,
九(1)的众数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
九(2)班的中位数是80;
九(2)班的众数是100;
九(2)的平均数为(70+75+80+100+100)÷5=85,
班级 平均数(分) 中位数(分) 众数(分)
九(1) 85 85 85
九(2) 85 80 100
(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)

(3)=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,
=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.
【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
19.同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图,如图中的数字表示每一级台阶的高度(单位:cm).并且数d、e、e、c、c、d的方差p,数据b、d、g、f、a、h的方差q,(10cm<a<b<c<d<e<f<g<h<20cm,且 p<q),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

【分析】(1)根据已知条件和示意图可以确定相同点和不同点;
(2)利用方差的定义即可解决问题;
(3)由于要方便游客行走,要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,利用方差的定义即可解决问题.
【解答】解:(1)∵如图是其中的甲、乙段台阶路的示意图,图中的数字表示每一级台阶的高度(单位:cm).并且数d、e、e、c、c、d的方差p,数据b、d、g、f、a、h的方差q,(10cm<a<b<c<d<e<f<g<h<20cm,且 p<q),
∴相同点:甲台阶与乙台阶的各阶高度参差不齐,不同点:甲台阶各阶高度的极差比乙台阶小;
(2)甲台阶,因为甲台阶各阶高度的方差比乙台阶小;
(3)使台阶的各阶高度的方差越小越好.
【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20.在“创建全国文明城市”演讲比赛中,学校根据初赛成绩在七、八年级分别选出10名同学参加决赛,这些选手的决赛成绩如图所示:
团体成绩 众数 平均数 方差
七年级  80  85.7 39.6
八年级  85  85.7 27.81
根据如图和表提供的信息,解答下列问题:
(1)请你把上边的表格填写完整;
(2)考虑平均数与方差,你认为 八 年级的团体成绩更好些;
(3)假设在每个年级的决赛选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?请说明理由.

【分析】(1)众数即出现次数最多的那个数,通过读图得到,七年级有三人拿了80分,八年级有3人拿了85分,从而确定七、八年级的众数;
(2)根据方差的意义分析;
(3)分别计算两个年级前三名的总分,得出较高的一个班级实力较强一些.
【解答】解:(1)填表如下:
团体成绩 众数 平均数 方差
七年级 80 85.7 39.6
八年级 85 85.7 27.81
故答案为:80,85;

(2)由于平均数一样,而八年级的方差小于七年级的方差,方差越小则其稳定性就越强,所以应该是八年级团体成绩更好些.
故答案为八;

(3)七年级前三名总分:99+91+89=279(分),
八年级前三名总分:97+88+88=273(分),
故七年级实力更强些.
【点评】本题考查了折线统计图,此题不但要求学生能看懂折线统计图,而且要求掌握方差、平均数、众数的运用.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/3 4:50:18;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261




































21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)