浙教版 八年级数学下册 2.3一元二次方程的应用 同步练习 含答案

文档属性

名称 浙教版 八年级数学下册 2.3一元二次方程的应用 同步练习 含答案
格式 zip
文件大小 77.9KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2019-03-04 19:37:33

图片预览

文档简介

浙教版 2019年 八年级数学下册 一元二次方程的应用
同步练习
一、选择题
某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是( )
A.580(1+x)2=1185 B.1185(1+x)2=580 C.580(1-x)2=1185 D.1185(1-x)2=580
在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是( )
A. B.x(x﹣1)=90 C. D.x(x+1)=90
某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315
毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为( )
A.34 B.35 C.36 D.37
如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )
A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=0
在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是(????? )
? B.?
C.? D.
某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是(  )
A.8.5%???? B.9%?? C.9.5%???? D.10%
菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为( )
A.8 B.20 C.8或20 D.10
如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )
A.1米 B.1.5米 C.2米 D.2.5米
已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2最小值是( )
A.6 B.3 C.﹣3 D.0
二、填空题
某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是   .
据调查,2015年4月某市的房价均价为7600元/m2,2017年同期将达到9800元/m2.假设这两年该市房价的平均增长率为x,根据题意,可列方程为 .
学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为      .
某工程生产一种产品,第一季度共生产了364个,其中1月份生产了100个,若2、3月份的平均月增长率为x,则可列方程为 .
如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为 .
《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”
译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为 .
三、解答题
如图,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?

制造某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元,求平均每次降低成本的百分率.
某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人.
(1)求第一轮后患病的人数;(用含x的代数式表示)
(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?
商场某种商品平均每天可销售30件,每件盈利100元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价2元,商场平均每天可多售出2件,设每件商品降价x (x为偶数) 元,据此规律,请回答:
(1)降价后,商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);
(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商品日盈利可达到4200元?
答案
D
B
B
B
C
B
D.
A
D.
A.
答案为:289(1﹣x)2=256.
答案为:7600(1+x)2=9800.
答案为:(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).
答案为:100+100(1+x)+100(1+x)2=364.
答案为:(9﹣2x)?(5﹣2x)=12.
答案为:x(x﹣12)=864.
答案为:AB=8米.
解:设平均每次降低成本的百分率为x,
300×(1-x)2=192,
(1-x)2=0.64
∴1-x=0.8
∴x=20%.
答:平均每次降低成本的百分率为20%.
解:(1)(1+x)人,
(2)设在每轮传染中一人将平均传给x人
根据题意得:x﹣1+x(x﹣1)=21
整理得:x2﹣1=21解得:,
∵x1,x2都不是正整数,∴第二轮传染后共会有21人患病的情况不会发生.
解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,
根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,
又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.
解:(1)降价2元,可多售出2件,降价x元,可多售出x件,每件商品盈利的钱数=元,
故答案为:x;100﹣x;
(2)由题意得:(30+x)=4200,解得:x1=30,x2=40,
∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴x=40,
答:每件商品降价40元,商场日盈利可达4200元.