3.1 平均数(知识清单+经典例题+夯实基础+提优训练+中考链接)

文档属性

名称 3.1 平均数(知识清单+经典例题+夯实基础+提优训练+中考链接)
格式 zip
文件大小 230.0KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-04-02 14:25:07

图片预览

文档简介

浙江版八年级数学下册第3章数据分析初步
3.1 平 均 数
【知识清单】
一、算术平均数:一般地,如果有n个数x1,x2,…,xn,我们把(x1+x2+…+xn)叫做这n个数的算术平均数,简称平均数,记做(读作“x拔”)
二、加权平均数:像这种形式的平均数叫做加权平均数,其中分母
a1、a2、...、ak表示各相同数据的个数,称为权.权越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和.
【经典例题】
例题1、一组数据3,4,x2,5,6,3x,7的平均数为5,则x的值为( )
【考点】算术平均数.
【分析】由平均数的公式建立关于x的方程,求解即可.
【解答】∵3,4,x2,5,6,3x,7的平均数为5,
∴3+4+x2+5+6+3x+7=7×5,
∴x2+3x10=0,
解得x1=5,x2=2.
【点评】本题考查的是平均数的求法及运用、一元二次方程的应用,即平均数公式:
例题2、如图是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为____千元.
【考点】条形统计图;算术平均数.
【分析】先从直方图中读出数据,然后利用平均数的定义求解.
【解答】从统计图中得出数据,
人均销售额为×(1×3+2×4+4×5+2×8+1×20)
=×67
=6.7(千元).
【点评】根据统计图中的数据熟练运用加权平均数进行正确计算.
【夯实基础】
1、一组数据2,3,0,4,6,7的算术平均数是(  )
A.-1    B.0    C.1    D.2
2、某住宅小区6号楼五月份1日至7日每天用电量变化情况如图所示,那么这7天平均每天的
用电量是 (  )千瓦时
A.33
B.32
C.31
D.30
3、一组数据的和为114,平均数为6,则这组数据的个数为(  )
A.9 B.12 C.19 D.21
4、某商场用加权平均数来确定什锦糖的单价,由单价为16元/千克的甲种糖果12千克,单价为 10元/千克的乙种糖果20千克,单价为14元/千克的丙种糖果24千克混合成的什锦糖果的单价应定为 (  )
A.11元/千克 B.11.5元/千克 C.12元/千克 D.13元/千克
5、在在演讲比赛中,5位评委给其中一位选手打的平均分为8.4分,一位群众评委打出了6分,则
这位选手的平均分是____分.
6、若数据3y,8,1,5,3x的平均数为6,则x+y=____.
7、某品牌皮鞋代理商为了预测本店第一季度的皮鞋销售量,随机调查了7天皮鞋的日销售量,结
果如下(单位:双):12,15,11,10,16,17,14.
(1)这7天的平均日销售量是多少听?
(2)根据上面的计算结果,估计第一季度(按90天计算)该店能销售皮鞋多少双?
8、某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:
(1)这次共抽查了____名学生;
(2)所抽查的学生一周平均参加体育锻炼多少小时?
(3)已知该校有1 600名学生,估计该校有多少名
学生一周参加体育锻炼的时间超过6小时?
【提优特训】
9、一个小组有18名学生,如果10名学生平均成绩是a,另外8名学生的平均分b,那么这个小组的平均成绩是( )
A. B. C. D.
10、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约550个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:西瓜质量(单位:千克)5.5,5.6,5.7,5.9,6.2,6.5,6.6,6.7,6.8,7.则这亩地的西瓜产量约是( )千克
A.3000 B.3437.5 C.3556.5 D.3245.5
11、在期末评教活动中对教师的一学期教育教学水平进行综合评分,满分为100分,某位老师的得分情况如下:领导平均给分90分,教师平均给分88分,学生平均给分95分,家长平均给分89分,如果按照1∶1∶3∶2的数量进行计算,这位老师的综合评分是(  ).
A.91.57分 B.90.55分 C.92.57分 D.92分
12、某同学使用计算器求45个数据的平均数时,错将其中一个数据405输入为45,那么由此求出的平均数与实际平均数的差是 .
13、一组数据共8个数,分成3个和5个两组,且这两组数据的平均数是方程x214x+48=0的根, 则这8个数的平均数是 .
14、若数据a1,a2,a3,…,an的平均数为,则数据a13,a23,a33,…,an3的平均
数是 .
15、一次测验共有5道题,做对1道题得1分,已知26人的平均分超过4.8分,其中有3人得4
分,最低分3分,则得5分的有多少人?

16、为了了解某路公交车高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,
结果如下:21,22 ,24 ,25 ,27 ,28 ,31 ,29, 20 ,23
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车66个班次,根据上面的计算结果,估计在高峰时段从总
站乘该路车出行的乘客共有多少人?

17、已知方程①x2x2=0,②x22x5=0,③x23x10=0,…请你根据掌握的规律回答下列问题:
(1)求出前10个方程所有根的平均数多少?
(2)求出前n个方程所有根的平均数多少(用含n的代数式表示)?

18、某校对八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,
将调查结果绘制成如下条形统计图1和扇形统计图2.根据图中信息,回答下列问题:
(1)这次共抽查了____名学生;
(2)所抽查的学生平均分数是多少小时?
(3)已知该校有1 250名学生,估计该校有多少名
学生体能测试成绩在不小于3小时?
【中考链接】
19、(2018?江苏淮安)3.(3分)若一组数据3、4、5、x、6、7的平均数是5,则x的值是(  )
A.4 B.5 C.6 D.7
20、(2018?四川资阳) 6.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方
面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过
考核后所得的分数依次为90、88、83分,那么小王的最后得分是(  )
A.87 B.87.5 C.87.6 D.88
21、(2018?无锡) 7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机
抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:
售价x(元/件)
90
95
100
105
110
销量y(件)
110
100
80
60
50
则这5天中,A产品平均每件的售价为(  )
A.100元 B.95元 C.98元 D.97.5元
22、(2018?宜宾)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师
笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合
成绩得分最高者,则被录取教师的综合成绩为   .
教师成绩



笔试
80分
82分
78分
面试
76分
74分
78分
参考答案
?、????、????、????、????、??????、??????、??????、??????、???????、????
??、????或??????????、?????、??????、??????、???????、????分
7、某品牌皮鞋代理商为了预测本店第一季度的皮鞋销售量,随机调查了7天皮鞋的日销售量,结
果如下(单位:双):12,15,11,10,16,17,14.
(1)这7天的平均日销售量是多少听?
(2)根据上面的计算结果,估计第一季度(按90天计算)该店能销售皮鞋多少双?
解: (1)×(12+15+11+10+16+17+14)=13(双).
(2)90×13=1170(双).
8、某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:
(1)这次共抽查了____名学生;
(2)所抽查的学生一周平均参加体育锻炼多少小时?
(3)已知该校有1 600名学生,估计该校有多少名
学生一周参加体育锻炼的时间超过6小时?
解: (1)80
(2)=6.625(时);
(3)1 600×=900(名).
15、一次测验共有5道题,做对1道题得1分,已知26人的平均分超过4.8分,其中有3人得4
分,最低分3分,则得5分的有多少人?
解:设得5分的人数为x人,得3分的人数为y人.
根据题意,得
解得:x>21.9
若x=23,则23+3=26,没有得3分的人,不符合题意,所以x=22.
答:得5分的人数应为22人.
16、为了了解某路公交车高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,
结果如下:21,22 ,24 ,25 ,27 ,28 ,31 ,29, 20 ,23
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车66个班次,根据上面的计算结果,估计在高峰时段从总
站乘该路车出行的乘客共有多少人?
(1)平均数=(21+22+24+25+27+28+31+29+20+23)=25(人)
∴这10个班次乘车人数的平均数是25人.
(2)66×25=1650(人)
∴估计在高峰时段从总站乘该路车出行的乘客共有1650人.
17、已知方程①x2x2=0,②x22x5=0,③x23x10=0,…请你根据掌握的规律回答下列问题:(1)求出前10个方程所有根的平均数多少?
(2)求出前n个方程所有根的平均数多少(用含n的代数式表示)?
解:(1)根据规律和题意知这10都有两个不相等的实数根,
设这20个实数根分别为x1,x2,x3,x4,…,x19,x20,
根据一元二次方程根与系数的关系,得x1+x2=1,x3+x4=2,…,x19+x20=10,
∴x1+x2+x3+x4+…+x19+x20=1+2+…+10=50,
则这20个实数根的平均数为(x1+x2+x3+x4+…+x19+x20)=×50=2.5;
(2)(x1+x2+x3+x4+…+x2n-1+x2n)= ×(1+2+4+…+n)=.
18、某校对八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,
将调查结果绘制成如下条形统计图1和扇形统计图2.根据图中信息,回答下列问题:
(1)这次共抽查了____名学生;
(2)所抽查的学生平均分数是多少小时?
(3)已知该校有1 250名学生,估计该校有多少名
学生体能测试成绩在不小于3小时?
【解析】(1)这次抽查学生人数为16÷32%=50(人),
(2)3分的有50×46%=23(人),2分的有7人,
∴平均分为=3.02(分).
(3)1250×=975(人).