浙教版八年级数学下册第1章二次根式阶段性测试(2份打包)含答案

文档属性

名称 浙教版八年级数学下册第1章二次根式阶段性测试(2份打包)含答案
格式 zip
文件大小 1019.2KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2019-03-26 10:06:07

文档简介

阶 段 性 测 试(一)
[考查范围:第1章 1.1~1.2 总分:100分]
一、选择题(每小题5分,共30分)
1.要使式子有意义,则x的取值范围是( C )
A.x>1      B.x>-1
C.x≥1 D.x≥-1
2.下列二次根式中属于最简二次根式的是( D )
A. B.
C. D.
3.若二次根式=4,则a的值是( D )
A.6 B.14
C.16 D.18
4.化简,正确的结果是( B )
A.±72 B.72
C.432 D.以上答案都不是
5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( A )
A.-2a+b B.2a-b
C.-b D.b
6.下列五个等式:①()2=a;②=a;③=a2;④a0=1;⑤=2.
其中一定成立的有( B )
A.1个 B.2个
C.3个 D.4个
二、填空题(每小题5分,共25分)
7.计算:-()2=__-1__.
8.若代数式+有意义,则x的值为__2__.
9.化简的结果是____.
10.在函数y=中,自变量x的取值范围是__-211.若二次根式是最简二次根式,则最小的正整数a=__2__.
三、解答题(共45分)
12.(15分)化简:
(1);  (2)-;
(3)-;     (4);
(5).
【答案】 (1)156 (2)-5 (3)-16
(4) (5)
13.(8分)计算:
(1)(-)2+-;
(2)(-1)×+.
【答案】 (1)5 (2)5
14.(10分)观察下列等式:
①=1×3;②=3×5;③=5×7;…
根据上述等式的规律解决下列问题:
(1)完成第④个等式:=__________.
(2)写出你猜想的第n个等式(用含n的代数式表示),并证明其正确性.
解:(1)7×9
(2)第n个等式:=
(2n-1)(2n+1).
证明:=
=
=(2n-1)(2n+1).
15.(12分)(1)当a<0时,化简;
(2)已知x满足的条件为,化简+;
(3)实数a,b在数轴上表示如图,化简:
-+.
解:(1)∵a<0,
∴a-1<0.
原式===-;
(2)解不等式组得:-1<x<3,
∴原式=+.
∵-1<x<3,
∴x-3<0,x+1>0,
∴原式=3-x+x+1=4;
(3)观察数轴可得b<-2,1<a<2,
∴a+2>0,b-2<0,a+b<0,
∴原式=a+2-(2-b)+(-a-b)=0.
阶 段 性 测 试(二)
[考查范围:第1章 1.1~1.3 总分:100分]
一、选择题(每小题6分,共30分)
1.计算×的结果是( B )
A.   B.4   C.   D.2
2.下列各式计算正确的是( D )
A.+= B.4-3=1
C.2×3=6 D.÷=3
3.能使等式=成立的x的取值范围是( C )
A.x≠2 B.x≥0
C.x>2 D.x≥2
4.下列各式中,与(2-)的积为有理数的是( D )
A.2 B.2-
C.-2+ D.2+
5.要焊接一个如图所示的钢架,需要的钢材长度是( A )
A.(3+7)m B.(5+7)m
C.(7+3)m D.(3+5)m
二、填空题(每小题5分,共25分)
6.计算:-=____.
7.计算:(+1)2=__4+2__.
8.一个斜坡与水平方向的夹角是30°,则这个斜坡的坡比是__1∶__.
9.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为__8__.
10.若a是的小数部分,则a(a+6)=__2__.
三、解答题(共45分)
11.(20分)计算:
(1)×÷;
(2)2-+;
(3)-2;
(4)(2+)(-3);
(5)-.
【答案】 (1) (2) (3)2
(4)-1- (5)-1-
12.(8分)已知x=,y=,求下列各式的值.
(1)xy;
(2).
解:(1)xy=1
(2)∵x=(-1)2=3-2,
y=(+1)2=3+2,
∴x+y=6,xy=1,
∴原式===.
13.(7分)已知△ABC的三边长分别为a,b,c,化简:+-.
解:∵a,b,c为△ABC的三边长,
∴a+b+c>0,b+c>a,a+b>c,
∴a-b-c<0,c-a-b<0.
∴+-
=|a+b+c|+|a-b-c|-|c-a-b|
=a+b+c-(a-b-c)+(c-a-b)
=a+b+c+b+c-a+c-a-b
=-a+b+3c.
14.(10分)如图,在3×3的正方形网格中,每个小正方形的边长都是1,每个小格的顶点叫格点,以格点为顶点,分别按下列要求画三角形:
(1)请在网格图1中画出一个三边长分别为3,2,的三角形,并求出它的面积.
(2)请在网格图2中画出一个三边长均为无理数,且面积为的钝角三角形.
解:(1)如图1所示,△ABC中,AB=3,BC==,AC==2,
面积=×3×2=3;
(2)如图2所示,△ABC中,AB==3,BC==,AC==,
点C到AB的距离为×=,
面积=×3×=,
所以,△ABC即为所求作的三角形.