浙教版数学九年级下册 2.1《直线与圆的位置关系》教案

文档属性

名称 浙教版数学九年级下册 2.1《直线与圆的位置关系》教案
格式 zip
文件大小 9.7KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2019-03-29 17:38:51

图片预览

文档简介

《直线与圆的位置关系》教案
教学目标
知识与技能
1.使学生理解直线与圆的位置关系.
2.初步掌握直线与圆的位置关系的数量关系定理及其运用.
3.通过对直线与圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力.
数学思考与问题解决
在观察与探究的过程中,进一步培养使用“分类”与“归纳”等思想与方法的能力.
情感与态度
经历探究直线与圆的位置关系的过程,进一步体会解决数学问题的策略.
重点难点
重点
正确理解直线与圆的位置关系,特别是直线与圆相切的关系,这是以后学习中经常用到的一种关系.
难点
直线与圆的位置关系与圆心到直线的距离和圆的半径大小关系的对应,它既可作为各种位置关系的判定,又可作为性质.
教学设计
一、新课引入
我们已经学习过用点到圆心的距离和圆半径的大小关系来判断点与圆的位置关系,现在我们用同样的数学思想方法来研究直线与圆的位置关系.请同学们回忆:(1)点与圆有哪几种位置关系?(2)怎样判定点与圆的位置关系?
我们已经了解了平面上点与圆共有三种位置关系:①点在圆外,②点在圆上,③点在圆内.如果我们设⊙O的半径为r,则有下面点与圆位置的数量关系:
点P在⊙O外OP>r;
点P在⊙O上OP=r;
点P在⊙O内OP二、新课讲解
活动一 操作、思考
从“海上日出”的图片及文章中将海平面看作是一条直线,将太阳看作是一个圆,在太阳上升的过程中,直线与圆的位置有什么不同?(①直线与圆的公共点的个数有所变化;②圆心到直线的距离有所变化)
实际上,太阳从地平线下缓缓升起时,太阳与地平线的位置关系,铁轨上飞奔的列车,它的轮子与铁轨之间的位置关系都给了我们直线与圆的位置关系的印象.那么平面上给定一个圆和一条运动着的直线或给定一条直线和一个运动着的圆,它们之间虽然有着若干种不同的位置关系,但仅从数学角度看,这若干种位置关系能分为几大类?请同学们打开练习本,画一画,并互相研究.
学生动手画,教师巡视.当所有学生都把三种位置关系画出来时,教师可以用计算机或幻灯机给学生演示,演示的过程一定要用两种方法:一是给定直线,圆在动;二是给定圆,直线在动,这样学生才能从运动的观点去研究问题.
最终教师指导学生从直线与圆的公共点的个数来完成直线
与圆的位置关系的定义.
1.直线与圆有两个公共点时,叫做直线与圆相交,直线叫做圆的割线.
2.直线与圆有唯一一个公共点时,叫做直线与圆相切.直线叫圆的切线,唯一的公共点叫做切点.
3.直线与圆没有公共点时,叫做直线与圆相离.
活动二 探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系
在直线与圆的位置关系中,直线与圆相切是非常重要的位置关系,在今后的学习中有重要意义,务必使每位学生都能掌握.除从直线与圆的公共点的个数来判断直线是否与圆相切外,是否还有其他的判定方法呢?可提示学生,从点与圆的位置关系去考察,特别要从点到圆心的距离与圆半径的关系去考察.若该圆心O到直线L的距离为d,⊙O半径为r,指导学生观察已经确定的直线与圆的三种位置关系,很容易得到所需的结论:
(1)直线l与⊙O相交d(3)直线l与⊙O相离d>r.
但是反过来,若先给定了圆心到直线的距离与圆的半径的数量关系,判断直线与圆的位置关系时,学生可能有一定的困难.这时可引导学生利用点到直线的距离来思考.向学生介绍符号“”的意义及读法.
活动三 探究切点的性质
如课本第41页图2-8,直线AT与⊙O相切于点A,连接OA,P是AT上一点,∠OAP等于多少度?在⊙O上再任意去一些点,过各点作⊙O的切线(根据圆的切线的定义,画出大致图形),连接圆心与切点.半径与切线所成的角为多少度?由此你发现什么?
问:你的发现与你的同伴的发现相同吗?
一般地,圆的切线有如下的性质:
经过切点的半径垂直于圆的切线.
三、例题讲解
例1 已知:如课本第35页图2-3,P为∠ABC的角平分线上一点,⊙P与BC相切.求证:⊙P与AB相切.
证明 设⊙P的半径为r,点P到BC,AB的距离分别为d1,d2.
∵点P在∠ABC的平分线上,
∴d1=d2.
又⊙P与BC相切,
∴d1=r,则d2=r.
∴⊙P与AB相切.
例2 在码头A的北偏东60°方向有一个海岛,离该岛中心P的12海里范围内是一个暗礁区.货船从码头A由西向东航行,行驶了10海里到达点B,这时岛中心P在北偏东45°方向.若货船不改变航向,则货船会不会进入暗礁区?
例3 已知,如课本第38页图2-6,A是⊙O外一点,AO的延长线交⊙O于点C,点B在圆上,且AB=BC,∠A=30°.求证:直线AB是⊙O的切线.
例4 如课本第39页图2-7,台风中心P(100,200)沿北偏东30°方向移动,受台风影响区域的半径为200km.那么下列城市A(200,300),B(600,480),C(550,300),D(370,540)中,哪些受到这次台风的影响,哪些不受到这次台风的影响?
例5 木工师傅可以用角尺测量并计算出圆的半径,如课本42页图2-9,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量的AB=8cm,BC=16cm.求⊙O的半径.
例6 已知:如课本第42页图2-10,直线AB与⊙O相切于点C,AO角⊙O于点D,连接CD,OC.求证:∠ACD=∠COD.
四、课堂小结
为了培养学生阅读教材的习惯,请学生看教材第5?6页,从中总结出本课学习的主要内容有:
1.从图形公共点看,直线与圆有两个公共点,直线与圆相交,直线是圆的割线;直线与圆有唯一公共点,直线与圆相切,直线是圆的切线;直线与圆没有公共点,直线与圆相离.
2.直线与圆的位置关系也可用有关数量关系来刻画,即直线l与⊙O相交dr.
3.目前判定一条直线是圆的切线的方法有二:其一是直线与圆有唯一公共点,特别要强调“唯一”一词的意义;其二是圆心到直线的距离等于圆的半径.
五、布置作业
教材第36页练习.