中小学教育资源及组卷应用平台
绝密★启用前
浙教版八下同步练习第四章平行四边形
4.4 平行四边形的判定定理
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分
一.选择题(共8小题)
1.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥CD,AD∥BC B.OA=OC,OB=OD
C.AD=BC,AB∥CD D.AB=CD,AD=BC
2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
3.若以A(﹣0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )
A.6种 B.5种 C.4种 D.3种
5.下列结论正确的是( )
A.对角线相等且一组对角相等的四边形是平行四边形
B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形
C.一组对边平行且一组对角相等的四边形是平行四边形
D.对角线相等的四边形是平行四边形
6.某人准备设计平行四边形图案,拟以长为4cm,5cm,7cm的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为( )
A.1 B.2 C.3 D.4
7.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是( )
A.24 B.18 C.16 D.12
8.如图,在?ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
A.7个 B.8个 C.9个 D.11个
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分
二.填空题(共6小题)
9.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是 (横线只需填一个你认为合适的条件即可)
10.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是 .(填写一组序号即可)
11.如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则 秒后四边形ABQP为平行四边形.
12.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t= s时,以A、C、E、F为顶点四边形是平行四边形.
13.如图,在矩形ABCD中,BC=6cm,AB=8cm,E是BC上的一点,且BE=5cm,过点E作EF⊥BD,垂足为F,点P从D出发沿DB方向向点B运动,速度为1cm/秒,运动时间为t秒.在矩形边上找一点Q,使得以E,F,P,Q为顶点的四边形为平行四边形,则t值为 秒.
14.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则 秒时,直线QP将四边形ABCD截出一个平行四边形.
评卷人 得 分
三.解答题(共7小题)
15.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
16.如图,在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:
(1)△BEG≌△DFH;
(2)四边形GEHF是平行四边形.
17.如图,?ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.
18.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.
(1)求证:四边形BDEF是平行四边形;
(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.
19.如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.
(1)直接写出∠ADE的度数(用含α的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
20.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E、F.
(1)当点P为AB的中点时,如图1,连接AF、BE.证明:四边形AEBF是平行四边形;
(2)当点P不是AB的中点,如图2,Q是AB的中点.证明:△QEF为等腰三角形.
21.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.
(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;
(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);
(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).
参考答案与试题解析
一.选择题(共8小题)
1.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥CD,AD∥BC B.OA=OC,OB=OD
C.AD=BC,AB∥CD D.AB=CD,AD=BC
【分析】根据平行四边形的判定定理分别进行分析即可.
【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;
B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;
C、不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;
故选:C.
【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.
【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;
①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
∴有4种可能使四边形ABCD为平行四边形.
故选:B.
【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.
3.若以A(﹣0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【分析】令点A为(﹣0.5,4),点B(2,0),点C(0,1),①以BC为对角线作平行四边形,②以AC为对角线作平行四边形,③以AB为对角线作平行四边形,从而得出点D的三个可能的位置,由此可判断出答案.
【解答】解:根据题意画出图形,如图所示:
分三种情况考虑:①以CB为对角线作平行四边形ABD1C,此时第四个顶点D1落在第一象限;
②以AC为对角线作平行四边形ABCD2,此时第四个顶点D2落在第二象限;
③以AB为对角线作平行四边形ACBD3,此时第四个顶点D3落在第四象限,
则第四个顶点不可能落在第三象限.
故选:C.
【点评】本题考查了平行四边形的性质及坐标的性质,利用了数形结合的数学思想,学生做题时注意应以每条边为对角线分别作平行四边形,不要遗漏.
4.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )
A.6种 B.5种 C.4种 D.3种
【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.
【解答】解:依题意得有四种组合方式:
(1)①③,利用两组对边平行的四边形是平行四边形判定;
(2)②④,利用两组对边相等的四边形是平行四边形判定;
(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.
故选:C.
【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.
5.下列结论正确的是( )
A.对角线相等且一组对角相等的四边形是平行四边形
B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形
C.一组对边平行且一组对角相等的四边形是平行四边形
D.对角线相等的四边形是平行四边形
【分析】根据平行四边形的各种判定方法分析即可.
【解答】解:如图已知:AB∥CD,∠A=∠C,则四边形ABCD是平行四边形.
理由:∵AB∥CD,
∴∠A+∠D=180°,∠B+∠C=180°,
∵∠A=∠C,
∴∠B=∠D,∵∠A=∠C,
∴四边形ABCD爱上平行四边形,
由此可知答案C是正确的,
故选:C.
【点评】本题考查了平行四边形的判定方法,解题的关键是熟记各种判定定理.
6.某人准备设计平行四边形图案,拟以长为4cm,5cm,7cm的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为( )
A.1 B.2 C.3 D.4
【分析】以长为4cm,5cm,7cm的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,以哪一条为对角线,哪两条为边需要分情况讨论.
【解答】解:分别以4cm,5cm为边,7cm为对角线;或以4cm,7cm为边,5cm为对角线;或5cm,7cm为边,4cm为对角线共有三种情况.
故选:C.
【点评】本题考查了平行四边形的判定,实质上只要三条线段的长符合构成三角形,就可以画不同形状的平行四边形.
7.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是( )
A.24 B.18 C.16 D.12
【分析】根据等角对等边可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后根据等角对等边可得CE=DE,同理可得BF=DF,然后求出四边形DEAF的周长=AB+AC,代入数据进行计算即可得解.
【解答】解:∵AB=AC,
∴∠B=∠C,
∵DE∥AB,
∴∠B=∠CDE,
∴CE=DE,
同理可得BF=DF,
∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,
∵AB=AC=8,
∴四边形DEAF的周长=8+8=16.
故选:C.
【点评】本题主要考查了等腰三角形的判定与性质,平行线的性质,熟记等腰三角形的性质与判定求出四边形DEAF的周长=AB+AC是解题的关键.
8.如图,在?ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )
A.7个 B.8个 C.9个 D.11个
【分析】根据平行四边形的定义即可求解.
【解答】解:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边DEOH、DEFC、DHGA、BGOF、BGHC、BAEF、AGOE、CHOF和ABCD都是平行四边形,共9个.
故选:C.
【点评】本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.
二.填空题(共6小题)
9.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是 AD=BC(或AB∥CD) (横线只需填一个你认为合适的条件即可)
【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.
【解答】解:根据平行四边形的判定方法,知
需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.
故答案为AD=BC(或AB∥CD).
【点评】此题考查了平行四边形的判定,为开放性试题,答案不唯一,要掌握平行四边形的判定方法.
两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
10.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是 ①③ .(填写一组序号即可)
【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.
【解答】解:可选条件①③,
∵AD∥BC,
∴∠DAO=∠OCB,∠ADO=∠CBO,
在△AOD和△COB中,
,
∴△AOD≌△COB(AAS),
∴DO=BO,
∴四边形ABCD是平行四边形.
故答案为:①③.
【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.
11.如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则 2 秒后四边形ABQP为平行四边形.
【分析】由运动时间为x秒,则AP=x,QC=2x,而四边形ABQP是平行四边形,所以AP=BQ,则得方程x=6﹣2x求解.
【解答】解:∵运动时间为x秒,
∴AP=x,QC=2x,
∵四边形ABQP是平行四边形,
∴AP=BQ,
∴x=6﹣2x,
∴x=2.
答:2秒后四边形ABQP是平行四边形.
故答案为:2.
【点评】本题考查了平行四边形的判定与性质.此题根据路程=速度×时间,得出AP、QC的长,然后根据已知条件列方程求解.
12.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t= 2或6 s时,以A、C、E、F为顶点四边形是平行四边形.
【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.
【解答】解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BC﹣BF=6﹣2t(cm),
∵AG∥BC,
∴当AE=CF时,四边形AECF是平行四边形,
即t=6﹣2t,
解得:t=2;
②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BF﹣BC=2t﹣6(cm),
∵AG∥BC,
∴当AE=CF时,四边形AEFC是平行四边形,
即t=2t﹣6,
解得:t=6;
综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.
故答案为:2或6.
【点评】此题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.
13.如图,在矩形ABCD中,BC=6cm,AB=8cm,E是BC上的一点,且BE=5cm,过点E作EF⊥BD,垂足为F,点P从D出发沿DB方向向点B运动,速度为1cm/秒,运动时间为t秒.在矩形边上找一点Q,使得以E,F,P,Q为顶点的四边形为平行四边形,则t值为 3或或或 秒.
【分析】根据条件可证明△BEF∽△BDC,可求得EF,当以E,F,P,Q为顶点的四边形为平行四边形时结合条件可知PQ∥EF,且PQ=EF,再分Q在AD、AB、CD三边上分别求得PD的长,可求得t的值.
【解答】解:∵BC=6cm,AB=8cm,
∴BD=10,
∵四边形ABCD为矩形,
∴∠C=∠EFB,且∠EBF=∠CBD,
∴△BEF∽△BDC,
∴=,即=,
∴EF=4cm,
当以E,F,P,Q为顶点的四边形为平行四边形时,则有PQ=EF=4cm,且PQ∥EF,
∵EF⊥BD,
∴PQ⊥BD,
∴∠QPD=90°,
设运动时间为t秒,则PD=tcm,
①当Q在AD上时,如图1,
∵四边形ABCD为矩形,
∴∠A=∠QPD=90°,且∠QDP=∠BDA,
∴△QPD∽△BAD,
∴=,即=,
∴PD=3,所以t=3s,
②当Q在AB上时,如图2,
同理可得=,即=,解得PB=,
∴PD=BD﹣PB=10﹣=,
∴t=s,
③当Q在CD上时,如图3,
同理可得=,即=,解得PD=,
∴t=s,
④
同理可求得此时t=s,
综上可知t的值为3秒或秒或秒或秒,
故答案为:3或或或秒.
【点评】本题主要考查矩形及平行四边形的性质及相似三角形的判定和性质,由条件确定出Q点所在的位置是解题的关键,注意分类讨论思想的应用.
14.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则 2或3 秒时,直线QP将四边形ABCD截出一个平行四边形.
【分析】设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;分两种情况:
①当AP=DQ时,得出方程,解方程即可;
②当BP=CQ时,得出方程,解方程即可.
【解答】解:设x秒时,直线QP将四边形ABCD截出一个平行四边形;
则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;
∵CD∥AB,
∴分两种情况:
①当AP=DQ时,x=6﹣2x,
解得:x=2;
②当BP=CQ时,9﹣x=2x,
解得:x=3;
综上所述:当2秒或3秒时,直线QP将四边形ABCD截出一个平行四边形;
故答案为:2或3.
【点评】本题考查了梯形的性质、平行四边形的判定、解方程等知识;熟练掌握梯形的性质和平行四边形的判定方法是解决问题的关键.
三.解答题(共7小题)
15.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.
【解答】解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.
【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.
16.如图,在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:
(1)△BEG≌△DFH;
(2)四边形GEHF是平行四边形.
【分析】(1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
(2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥DC,
∴∠ABE=∠CDF,
∵AG=CH,
∴BG=DH,
在△BEG和△DFH中,
,
∴△BEG≌△DFH(SAS);
(2)∵△BEG≌△DFH(SAS),
∴∠BEG=∠DFH,EG=FH,
∴∠GEF=∠HFB,
∴GE∥FH,
∴四边形GEHF是平行四边形.
【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
17.如图,?ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.
【分析】(1)通过全等三角形△BEC≌△DFA的对应边相等推知BE=DF,则结合已知条件证得结论;
(2)根据矩形的性质计算即可.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAF=∠BCE.
又∵BE∥DF,
∴∠BEC=∠DFA.
在△BEC与△DFA中,
,
∴△BEC≌△DFA(AAS),
∴BE=DF.
又∵BE∥DF,
∴四边形BEDF为平行四边形;
(2)连接BD,BD与AC相交于点O,如图:
∵AB⊥AC,AB=4,BC=2,
∴AC=6,
∴AO=3,
∴Rt△BAO中,BO=5,
∵四边形BEDF是矩形,
∴OE=OB=5,
∴点E在OA的延长线上,且AE=2.
【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
18.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.
(1)求证:四边形BDEF是平行四边形;
(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.
【分析】(1)证明△AGE≌△ACE,根据全等三角形的性质可得到GE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;
(2)先证明BF=DE=BG,再证明AG=AC,可得到BF=(AB﹣AG)=(AB﹣AC).
【解答】(1)证明:延长CE交AB于点G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°,
在△AEG和△AEC中,
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,
∴四边形BDEF是平行四边形.
(2)解:BF=(AB﹣AC).
理由如下:
∵四边形BDEF是平行四边形,
∴BF=DE.
∵D、E分别是BC、GC的中点,
∴BF=DE=BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=(AB﹣AG)=(AB﹣AC).
【点评】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形中位线定理,题目综合性较强,证明GE=EC,再利用三角形中位线定理证明DE∥AB是解决问题的关键.
19.如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.
(1)直接写出∠ADE的度数(用含α的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
【分析】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;
(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;
②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.
【解答】解:(1)∵在△ABC中,AB=AC,∠ABC=α,
∴∠BAC=180°﹣2α,
∵∠DAE+∠BAC=180°,
∴∠DAE=2α,
∵AE=AD,
∴∠ADE=90°﹣α;
(2)①证明:∵四边形ABFE是平行四边形,
∴AB∥EF.
∴∠EDC=∠ABC=α,
由(1)知,∠ADE=90°﹣α,
∴∠ADC=∠ADE+∠EDC=90°,
∴AD⊥BC.
∵AB=AC,
∴BD=CD;
②证明:∵AB=AC,∠ABC=α,
∴∠C=∠B=α.
∵四边形ABFE是平行四边形,
∴AE∥BF,AE=BF.
∴∠EAC=∠C=α,
由(1)知,∠DAE=2α,
∴∠DAC=α,
∴∠DAC=∠C.
∴AD=CD.
∵AD=AE=BF,
∴BF=CD.
∴BD=CF.
【点评】此题考查了平行四边形的判定与性质以及等腰三角形的性质与判定.注意(2)①中证得AD⊥BC是关键,(2)②中证得AD=CD是关键.
20.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E、F.
(1)当点P为AB的中点时,如图1,连接AF、BE.证明:四边形AEBF是平行四边形;
(2)当点P不是AB的中点,如图2,Q是AB的中点.证明:△QEF为等腰三角形.
【分析】(1)首先证明△BFQ≌△AEQ可得QE=QF,再由AQ=BQ可利用对角线互相平分的四边形是平行四边形判定四边形AEBF是平行四边形;
(2)首先证明△FBQ≌△DAQ可得QF=QD,再根据直角三角形斜边中线等于斜边的一半可得QE=QF=QD,进而可得结论.
【解答】证明:(1)如图1,∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,∠BFQ=∠AEQ,
在△BFQ和△AEQ中:
∴△BFQ≌△AEQ(AAS),
∴QE=QF,
∴四边形AEBF是平行四边形;
(2)QE=QF,
如图2,延长FQ交AE于D,
∵AE∥BF,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中,
∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是直角三角形DEF斜边上的中线,
∴QE=QF=QD,即QE=QF,
∴△QEF是等腰三角形.
【点评】此题主要考查了平行四边形的判定,直角三角形的性质,全等三角形的判定和性质,关键是掌握对角线互相平分的四边形是平行四边形.
21.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.
(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;
(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);
(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).
【分析】(1)如图1,先根据两组对边分别平行的四边形是平行四边形得出四边形AEDF是平行四边形,则DE=AF.再根据平行线及等腰三角形的性质得出∠FDB=∠B,
由等角对等边得到DF=FB,从而证明DE+DF=AF+FB=AB;
(2)当点D在直线BC上时,分三种情况:
①当点D在CB延长线上时,如图2①,先证明四边形AEDF是平行四边形,则DE=AF,再证明∠FDB=∠FBD,由等角对等边得到DF=FB,从而证明AB=AF﹣BF=DE﹣DF;
②当点D在线段BC上时,如图1,AB=DE+DF;
③当点D在BC的延长线上时,如图2②,先证明四边形AEDF是平行四边形,则DF=AE,再证明∠CDE=∠DCE,由等角对等边得到CE=DE,再证明从而证明AB=AC=AE﹣CE=DF﹣DE;
(3)如图3,先证明四边形AEDF是平行四边形,则DF=AE,再证明∠EGC=∠C,由等角对等边得到DE+DG=CE,从而证明AB=AC=EC+AE=DE+DG+DF.
【解答】解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DE=AF.
∵DF∥AC,∴∠FDB=∠C,
∵AB=AC,∴∠C=∠B,
∴∠FDB=∠B,
∴DF=FB,
∴DE+DF=AF+FB=AB;
(2)当点D在直线BC上时,分三种情况:
①当点D在CB延长线上时,如图2①,AB=DE﹣DF;
②当点D在线段BC上时,如图1,AB=DE+DF;
③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;
(3)如图3,AB=DE+DG+DF.
【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,综合性较强,难度适中.(2)中分情况讨论是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/3 12:06:08;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)