5.1 矩形同步练习

文档属性

名称 5.1 矩形同步练习
格式 zip
文件大小 1.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-04-13 21:14:52

图片预览

文档简介








中小学教育资源及组卷应用平台


绝密★启用前
浙教版八下同步练习第五章特殊平行四边形
5.1 矩形
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分

一.选择题(共8小题)
1.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=6cm,则四边形CODE的周长为(  )

A.6 B.8 C.10 D.12
2.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有(  )

A.5对 B.6对 C.8对 D.10对
3.如图,若要使?ABCD成为矩形,需添加的条件是(  )

A.AB=BC B.∠ABD=∠DBC C.AO=BO D.AC⊥BD
4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(  )

A. B. C. D.
5.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为(  )

A.5 B. C. D.
6.如图,在△ABC中,∠A=90°,AC=8,AB=6,点D是BC边上的动点(不与B,C重合)过点D作DE⊥AB于点E,作DF⊥AC于点F,则EF的最小值是(  )

A.3 B. C.5 D.
7.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:
①m+n=q+p;
②m+p=n+q;
③若m=n,则E点一定是AC与BD的交点;
④若m=n,则E点一定在BD上.
其中正确结论的序号是(  )

A.①③ B.②④ C.①②③ D.②③④
8.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为(  )

A.cm2 B.cm2 C.5cm2 D.cm2



第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分

二.填空题(共6小题)
9.在矩形ABCD中,AB=6,∠ABC的平分线交AD于点E,∠BED的平分线交矩形的边于点F,若点F恰为其所在矩形边的中点,则BC=   .(结果保留根号)
10.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是   .

11.在平面直角坐标系中,已知点A(4,3),点B在y轴的正半轴上,连结AB,以AB为边作矩形ABCD,其中AB⊥BC且AB=3BC,设C点的横坐标为m,则用m的代数式表示D点的坐标为   .
12.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.点F是线段OA上的动点,从点O出发,以1cm/s的速度向点A作匀速运动;点Q在线段AB上,已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(a)时,△OCF、△FAQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况   .

13.如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,E,F是对角线AC上的两个动点,分别从A,C处同时出发相向而行,到C,A时停止运动.若两动点的速度均为1cm/s,AB=14cm,BC=18cm,AC=24cm,经t秒后,四边形GFHE为矩形,则此时t的值为   .

14.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=   用含k的代数式表示).

评卷人 得 分

三.解答题(共6小题)
15.如图,在平行四边形ABCD中,过点A作AE⊥BC交BC边于点E,点F在边AD上,且DF=BE.
(1)求证:四边形AECF是矩形.
(2)若BF平分∠ABC,且DF=1,AF=3,求线段BF的长.

16.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:AD=CN;
②若∠BAN=90度,求证:四边形ADCN是矩形.

17.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.
(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?
(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.

18.已知,如图:在平面直角坐标系中,O为坐标原点,OABC是长方形,点A、C的坐标分别为A(20,0),C(0,8),点D是OA的中点,点P在BC边上运动,△ODP是腰长为10的等腰三角形时,求满足条件的P点坐标.

19.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D出发,到第一次相遇时停止运动.
(1)求经过几秒钟M、N两点停止运动?
(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;
(3)写出△EMN的面积S(cm2)与运动时间为t(s)之间的函数表达式.

20.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.
(1)求证:△PHC≌△CFP;
(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.




参考答案与试题解析
一.选择题(共8小题)
1.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=6cm,则四边形CODE的周长为(  )

A.6 B.8 C.10 D.12
【分析】由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=3,即可判定四边形CODE是菱形,继而求得答案.
【解答】解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=6,OA=OC,OB=OD,
∴OD=OC=AC=3,
∴四边形CODE是菱形,
∴四边形CODE的周长为=4OC=4×3=12.
故选:D.
【点评】本题考查了菱形的判定与性质、矩形的性质等知识,证得四边形CODE是菱形是解此题的关键.
2.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有(  )

A.5对 B.6对 C.8对 D.10对
【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.
【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,
∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,
又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,
易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.
故选:D.
【点评】本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.
3.如图,若要使?ABCD成为矩形,需添加的条件是(  )

A.AB=BC B.∠ABD=∠DBC C.AO=BO D.AC⊥BD
【分析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.
【解答】解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,∠ABD=∠DBC,得出四边形ABCD是菱形,不是矩形;故本选项错误;
C、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AO=BO,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,故本选项正确;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选:C.
【点评】本题考查了对矩形的判定定理的应用,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.
4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(  )

A. B. C. D.
【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【解答】解:连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)
∴BH==,
则BF=,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF==.
故选:D.

【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
5.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为(  )

A.5 B. C. D.
【分析】设BE=x,则EC=6﹣x,由△EBF∽△DCE,得=,列出方程求出x,即可解决问题.
【解答】解:设BE=x,则EC=6﹣x,
∵EF⊥ED,
∴∠FED=90°,
∴∠FEB+∠DEC=90°,
∵∠DEC+∠EDC=90°,
∴∠FEB=∠EDC,∵∠B=∠C=90°,
∴△EBF∽△DCE,
∴=,
∴=,解得x=2或4(舍弃),
当x=2时,EF=2,DE=4,DF==2,
∴AM=ME=,
∵AM⊥ME,
∴∠AME=90°,
∴AE===2,
故选:B.

【点评】本题考查矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
6.如图,在△ABC中,∠A=90°,AC=8,AB=6,点D是BC边上的动点(不与B,C重合)过点D作DE⊥AB于点E,作DF⊥AC于点F,则EF的最小值是(  )

A.3 B. C.5 D.
【分析】连接AD,根据矩形的性质可知:EF=AD,当AD最小时,则EF最小,根据垂线段最短可知当EF⊥AD时,则EF最小,再根据三角形的面积为定值即可求出EF的长.
【解答】解:∵Rt△ABC中,∠A=90°,AC=8,BA=6,
∴BC=10,
连接AD,
∵DE⊥AB,DF⊥AC,
∴四边形EAFD是矩形,
∴EF=AD,
当AD最小时,则EF最小,根据垂线段最短可知当AD⊥BC时,则AD最小,
∴EF=AD==,
故选:B.

【点评】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求FE的最小值转化为其相等线段AD的最小值.
7.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:
①m+n=q+p;
②m+p=n+q;
③若m=n,则E点一定是AC与BD的交点;
④若m=n,则E点一定在BD上.
其中正确结论的序号是(  )

A.①③ B.②④ C.①②③ D.②③④
【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D重合,得出③不正确,④正确,即可得出结论.
【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:
则m=AB?EM,n=BC?EH,p=CD?EN,q=AD?EG,
∵四边形ABCD是矩形,
∴AB=CD=GH,BC=AD=MN,
∴m+p=AB?MN=AB?BC,n+q=(BC?GH=BC?AB,
∴m+p=n+q;
∴①不正确,②正确;
若m=n,则p=q,作AP⊥BE于P,作CQ⊥BE于Q,延长BE交CD于F,如图2所示:
则∠APB=∠CQF=90°,
∵m=BE?AP,n=BE?CQ,
∵m=n,
∴AP=CQ,
∵AB∥CD,
∴∠1=∠2,
在△ABP和△CFQ中,

∴△ABP≌△CFQ(AAS),
∴AB=CF,
∴F与D重合,
∴E一定在BD上;
∴③不正确,④正确.
故选:B.


【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.
8.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为(  )

A.cm2 B.cm2 C.5cm2 D.cm2
【分析】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.
【解答】方法一:
解:设矩形ABCD的面积为S=20cm2,
∵O为矩形ABCD的对角线的交点,
∴平行四边形AOC1B底边AB上的高等于BC的,
∴平行四边形AOC1B的面积=S,
∵平行四边形AOC1B的对角线交于点O1,
∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,
∴平行四边形AO1C2B的面积=×S=,
…,
依此类推,平行四边形AO4C5B的面积===(cm2).
故选:B.

方法二:
?q=,a1=10,
∴an=10?,∴a5=10?=.

【点评】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.
二.填空题(共6小题)
9.在矩形ABCD中,AB=6,∠ABC的平分线交AD于点E,∠BED的平分线交矩形的边于点F,若点F恰为其所在矩形边的中点,则BC= 3+3或12 .(结果保留根号)
【分析】分两种情形:①当点F是CD中点时,延长EF交BC于点G,首先证明△ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD≌△GFC得出CG与DE的相等关系,设CG=DE=x,并根据BG=BC+CG列出方程即可解决问题.②当点F是BC中点时,易知BC=2BF=2BE=12;
【解答】解:①当点F是CD中点时,延长EF和BC,交于点G,如图所示:

∵矩形ABCD中,∠B的角平分线BE与AD交于点E,
∴∠ABE=∠AEB=45°,
∴AB=AE=6,
∴等腰直角△ABE中,BE==6 ,
又∵∠BED的角平分线EF与DC交于点F,
∴∠BEG=∠DEF
∵AD∥BC
∴∠G=∠DEF
∴∠BEG=∠G
∴BG=BE=6 ,
∵∠G=∠DEF,∠EFD=∠GFC,DF=FC
∴△EFD≌△GFC
∴CG=DE,
设CG=DE=x,则AD=6+x=BC,
∵BG=BC+CG,
∴6 =6+x+x,
解得:x=3 ﹣3
∴BC=6+(3 ﹣3)=3+3 ;
②当点F是BC中点时,易知BC=2BF=2BE=12


故答案为:3+3 或12.
【点评】本题主要考查了矩形、全等三角形的判定和性质、等腰三角形,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
10.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是 5或4或5 .

【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;
②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;
③当PA=PE时,底边AE=5;即可得出结论.
【解答】解:如图所示:
①当AP=AE=5时,
∵∠BAD=90°,
∴△AEP是等腰直角三角形,
∴底边PE=AE=5;
②当PE=AE=5时,
∵BE=AB﹣AE=8﹣5=3,∠B=90°,
∴PB==4,
∴底边AP===4;
③当PA=PE时,底边AE=5;
综上所述:等腰三角形AEP的底边长为5或4或5;
故答案为:5或4或5.

【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.
11.在平面直角坐标系中,已知点A(4,3),点B在y轴的正半轴上,连结AB,以AB为边作矩形ABCD,其中AB⊥BC且AB=3BC,设C点的横坐标为m,则用m的代数式表示D点的坐标为 (4+m,)或(4+m,) .
【分析】过点A作AE⊥y轴于点E,过点C作CF⊥y轴于点F,则∠AEB=∠BFC=90°,通过角的计算找出∠CBF=∠BAE,从而得出△BFC∽△AEB,根据相似三角形的性质即可得出=,结合给定条件A(4,3),C点的横坐标为m,找出点C的坐标,再根据矩形的性质即可得出点D的坐标.
【解答】解:过点A作AE⊥y轴于点E,过点C作CF⊥y轴于点F,则∠AEB=∠BFC=90°,如图所示.
∵四边形ABCD为矩形,
∴∠ABC=90°,
∴∠CBF+∠ABE=90°,∠ABE+∠BAE=90°,
∴∠CBF=∠BAE.
又∵∠∠AEB=∠BFC=90°,
∴△BFC∽△AEB,
∴=.
∵A(4,3),C点的横坐标为m,
∴AE=4,CF=|m|,
∴BF=,BE=3|m|.
①当C、D在直线AB下方时:B(0,3﹣3m),C(m,﹣3m),
∴点D的坐标为(4+m﹣0,3+﹣3m﹣(3﹣3m)),即(4+m,);
②当C、D在直线AB上方时:B(0,3﹣3m),C(m,﹣3m),
∴点D的坐标为(4+m﹣0,3+﹣3m﹣(3﹣3m)),即(4+m,).
综上可知:点D的坐标为(4+m,)或(4+m,).
故答案为:(4+m,)或(4+m,).

【点评】本题考查了矩形的性质以及相似三角形的判定与性质,解题的关键是用含m的代数式表示出B、C的坐标.本题属于中档题,难度不大,解决该题型题目时,矩形ABCD字母的排列可能是顺时针也可能是逆时针.
12.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.点F是线段OA上的动点,从点O出发,以1cm/s的速度向点A作匀速运动;点Q在线段AB上,已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(a)时,△OCF、△FAQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况 (1,4),(,5),(0,10) .

【分析】分类讨论:①当△COF和△FAQ全等时,得到OC=AF,OF=AQ或OC=AQ,OF=AF,代入即可求出a、t的值;②同理可求当△FAQ和△CBQ全等时a、t的值,③△COF和△BCQ不全等,④F,Q,A三点重合,此时(0,10),综合上述即可得到答案.
【解答】解:①当△COF和△FAQ全等时,
OC=AF,OF=AQ或OC=AQ,OF=AF,
∵OC=6,OF=t,AF=10﹣t,AQ=at,代入得:或,
解得:t=4,a=1,或t=5,a=,
∴(1,4),(,5);
②同理当△FAQ和△CBQ全等时,必须BC=AF,BQ=AQ,
10=10﹣t,6﹣at=at,
此时不存在;
③因为△CBQ最长直角边BC=10,而△COF的最长直角边不能等于10,所以△COF和△BCQ不全等,
④F,Q,A三点重合,此时△COF和△CBQ全等,此时为(0,10)
故答案为:(1,4),(,5),(0,10).
【点评】本题主要考查了矩形的性质,全等三角形的性质和判定,坐标与图形的性质等知识点,解此题的关键是正确分组讨论.
13.如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,E,F是对角线AC上的两个动点,分别从A,C处同时出发相向而行,到C,A时停止运动.若两动点的速度均为1cm/s,AB=14cm,BC=18cm,AC=24cm,经t秒后,四边形GFHE为矩形,则此时t的值为 3或21 .

【分析】连接GH,先证明四边形BCHG是平行四边形,得出GH=BC=18,当对角线EF=GH=18时,平行四边形EGFH是矩形,分两种情况:①AE=CF=t,得出EF=24﹣2t=18,解方程即可;②AE=CF=t,得出EF=24﹣2(24﹣t)=18,解方程即可;
【解答】解:连接GH,如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵点G,H分别是AB,CD的中点,
∴BG=CH,BG∥CH,
∴四边形BCHG是平行四边形,
∴GH=BC=18,
当EF=GH=18时,平行四边形GFHE是矩形,
分两种情况:
①AE=CF=t,EF=24﹣2t=18,
解得:t=3;
②AE=CF=t,EF=24﹣2(24﹣t)=18,
解得:t=21;
综上所述:当t为3s或21s时,四边形EGFH为矩形;
故答案为:3或21.

【点评】本题考查了矩形的性质与判定、平行四边形的判定与性质;熟练掌握矩形的判定与性质,根据题意得出方程是解决问题的关键.
14.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=  用含k的代数式表示).

【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.
【解答】解:∵点E是边CD的中点,
∴DE=CE,
∵将△ADE沿AE折叠后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
连接EG,
在Rt△ECG和Rt△EFG中,

∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
设CG=a,
∵=,
∴GB=ka,
∴BC=CG+BG=a+ka=a(k+1),
在矩形ABCD中,AD=BC=a(k+1),
∴AF=a(k+1),
AG=AF+FG=a(k+1)+a=a(k+2),
在Rt△ABG中,AB===2a,
∴==.
故答案为:.

【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
三.解答题(共6小题)
15.如图,在平行四边形ABCD中,过点A作AE⊥BC交BC边于点E,点F在边AD上,且DF=BE.
(1)求证:四边形AECF是矩形.
(2)若BF平分∠ABC,且DF=1,AF=3,求线段BF的长.

【分析】(1)首先证明AF=EC,AF∥EC,推出四边形AECF是平行四边形,再证明∠AEC=90°即可解决问题;
(2)分别在Rt△ABE,Rt△BCF中,利用勾股定理求出AE、BF即可;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∵AE⊥BC,
∴∠AEC=90°,
∴四边形AECF是矩形.

(2)解:∵BF平分∠ABC,AD∥BC,
∴∠ABF=∠CBF=∠AFB,
∴AB=AF=3,AD=BC=4,
在Rt△ABE中,AE=CF==2,
在Rt△BFC中,BF===2.

【点评】本题考查平行四边形的性质、矩形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:AD=CN;
②若∠BAN=90度,求证:四边形ADCN是矩形.

【分析】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;
②利用有一个角是直角的平行四边形是矩形直接判断即可.
【解答】证明:①∵CN∥AB,
∴∠DAC=∠NCA,
在△AMD和△CMN中,
∵,
∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴AD=CN;

②∵∠BAN=90度,四边形ADCN是平行四边形,
∴四边形ADCN是矩形.
【点评】本题考查了矩形的判定,平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握平行四边形与矩形之间的关系,并由第一问求出四边形ADCN是平行四边形是解题的关键.
17.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.
(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?
(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.

【分析】(1)由四边形ABCD是平行四边形,AC=6,得到CP=AQ=1,PQ=BD=8,由OB=DO,OQ=OP,证得四边形BPDQ为平形四边形,根据对角线相等,证得四边形BPDQ为矩形;
(2)根据直角三角形的性质、勾股定理求得结论.
【解答】解:(1)当时间t=7秒时,四边形BPDQ为矩形.
理由如下:当t=7秒时,PA=QC=7,
∵AC=6,
∴CP=AQ=1
∴PQ=BD=8
∵四边形ABCD为平行四边形,BD=8
∴AO=CO=3
∴BO=DO=4
∴OQ=OP=4
∴四边形BPDQ为平形四边形,
∵PQ=BD=8
∴四边形BPDQ为矩形,
(2)由(1)得BO=4,CQ=7,
∵BC⊥AC
∴∠BCA=90°
BC2+CQ2=BQ2
∴BQ=.

【点评】此题考查了矩形的判定和性质,平行四边形的判定和性质,勾股定理得应用,动点问题等知识点.
18.已知,如图:在平面直角坐标系中,O为坐标原点,OABC是长方形,点A、C的坐标分别为A(20,0),C(0,8),点D是OA的中点,点P在BC边上运动,△ODP是腰长为10的等腰三角形时,求满足条件的P点坐标.

【分析】分为三种情况①OP=OD=10,②DP=OD=10,③OP=DP=10,根据勾股定理求出CP,OM即可.
【解答】解:∵A(20,0),C(0,8),四边形OABC是矩形,D是OA的中点,
∴OC=8,OD=10,∠OCB=∠COD=90°,
①OP=OD=10,
由勾股定理得:CP==6,
即P的坐标是(6,8);
②DP=OD=10,
过P作PM⊥OA于M,
则PM=OC=8,由勾股定理得:DM==6,
OM=10﹣6=4,
即P的坐标是(4,8);
③OP=DP=10,此时DM=OD=6,即OD≠10,即此时不存在;
④当OD=PD时,P(16,8)
故答案为:(6,8)或(4,8)或(16,8).

【点评】本题考查了矩形性质,等腰三角形的判定,坐标与图形性质,勾股定理的应用,关键是求出符合条件的所有情况.
19.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D出发,到第一次相遇时停止运动.
(1)求经过几秒钟M、N两点停止运动?
(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;
(3)写出△EMN的面积S(cm2)与运动时间为t(s)之间的函数表达式.

【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;
(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构?成?AEMN时,10﹣2t=14﹣3t,②当构成?AMEN时,10﹣2t=3t﹣14,继而求得答案;
(3)分别从当 0<t< 时,当≤t<时,当<t≤5时,当5<t<6时,去分析求解即可求得答案.
【解答】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,
∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),
∴t=30÷(2+3)=6 (s)
答:经过6 s两点相遇.

(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,
设经过t秒,四点可组成平行四边形,
①当构成?AEMN时,10﹣2t=14﹣3t,
解得 t=4;
②当构成?AMEN时,10﹣2t=3t﹣14,
解得t=4.8;
答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.

(3)如图(1),当 0<t< 时,S=S梯形CDNE﹣S△DMN﹣S△CEM=×(2t+9)×5﹣×2t×3t﹣×9×(5﹣3t)=﹣3t2+t;
如图(2),当≤t<时,S=S△EMN=EM?CD=×(3t﹣5﹣1)×5=35﹣t;
如图(3),当<t≤5时,S=S△EMN=×(3t﹣14)×5=t﹣35;
如图(4),当5<t<6时,S=S△EMN=MN?BE=×(30﹣2t﹣3t)×1=15﹣t.


【点评】此题考查了矩形的性质.此题难度较大,属于动点题目,解题时注意分类讨论思想、方程思想与数形结合思想的应用.
20.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.
(1)求证:△PHC≌△CFP;
(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.

【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;
(2)由矩形的性质找出∠D=∠B=90°,结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,再根据矩形的性质可得出S△ACD=S△ABC,S△PHC=S△PCF,S△AEP=S△APG,由此即可得出S△ACD﹣S△PHC﹣S△AEP=S△ABC﹣S△PCF﹣S△APG,即S矩形DEPH=S矩形PGBF.
【解答】证明:(1)∵四边形ABCD为矩形,
∴AB∥CD,AD∥BC.
∵PF∥AB,
∴PF∥CD,
∴∠CPF=∠PCH.
∵PH∥AD,
∴PH∥BC,
∴∠PCF=∠CPH.
在△PHC和△CFP中,

∴△PHC≌△CFP(ASA).

(2)∵四边形ABCD为矩形,
∴∠D=∠B=90°.
又∵EF∥AB∥CD,GH∥AD∥BC,
∴四边形PEDH和四边形PFBG都是矩形.
∵EF∥AB,HG∥BC,四边形ABCD为矩形,
∴四边形AEPG和四边形PHCF也是矩形,
∴S△ACD=S△ABC,S△PHC=S△PCF,S△AEP=S△APG,
∴S△ACD﹣S△PHC﹣S△AEP=S△ABC﹣S△PCF﹣S△APG,
即S矩形DEPH=S矩形PGBF.
【点评】本题考查了矩形的判定及性质、全等三角形的判定及性质以及平行线的性质,解题的关键是:(1)通过平行找出相等的角;(2)利用矩形的判定定理来证明四边形为矩形.本题属于中档题,难度不大,解决该题型题目时,根据结合矩形的性质及全等三角形的判定定理来解决问题是关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/4 3:59:32;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261


























21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)