中小学教育资源及组卷应用平台
绝密★启用前
浙教版八下同步练习第五章特殊平行四边形
5.2 菱形
题号 一 二 三 总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分
一.选择题(共8小题)
1.菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等
C.是轴对称图形 D.是中心对称图形
2.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )
A.20 B.24 C.40 D.48
3.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B.2 C.2 D.4
4.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是( )
A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC
5.如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为( )
A.28 B.24 C.32 D.32﹣8
6.求证:菱形的两条对角线互相垂直.
已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC⊥BD.
以下是排乱的证明过程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四边形ABCD是菱形;
④∴AB=AD.
证明步骤正确的顺序是( )
A.③→②→①→④ B.③→④→①→② C.①→②→④→③ D.①→④→③→②
7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移(2﹣1)个单位,再向上平移1个单位
C.向右平移个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
8.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;
其中正确结论的是( )
A.①②③ B.①②④ C.①③④ D.②③④
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人 得 分
二.填空题(共6小题)
9.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 .
10.如图,在平行四边形ABCD中,添加一个条件 使平行四边形ABCD是菱形.
11.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 .
12.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为 .
13.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为 cm.
14.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=
60°,连接EF,则△AEF的面积最小值是 .
评卷人 得 分
三.解答题(共6小题)
15.如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:?ABCD是菱形;
(2)若AB=5,AC=6,求?ABCD的面积.
16.如图,在?ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.
17.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.
求证:(1)△ADE≌△CDF;
(2)∠BEF=∠BFE.
18.求证:对角线互相垂直的平行四边形是菱形.
小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.
已知:如图,在?ABCD中,对角线AC,BD交于点O, .
求证: .
19.如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.
(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.
20.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案与试题解析
一.选择题(共8小题)
1.菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等
C.是轴对称图形 D.是中心对称图形
【分析】根据菱形的性质即可判断;
【解答】解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,
故选:B.
【点评】本题考查菱形的性质,解题的关键是熟练掌握菱形的性质,属于中考基础题.
2.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )
A.20 B.24 C.40 D.48
【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,
故这个菱形的周长L=4AB=20.
故选:A.
【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
3.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B.2 C.2 D.4
【分析】由菱形的性质四条边相等可求出菱形的周长,结合题干已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.
【解答】解:过点D作DH⊥AB于点H,
∵四边形ABCD是菱形,AO=CO,
∴AB=BC=CD=AD,
∵菱形ABCD的周长为16,
∴AB=AD=4,
∵∠BAD=60°,
∴DH=4×=2,
∴S菱形ABCD=4×2=8,
∴S△CDA=×8=4,
∵点E为边CD的中点,
∴OE为△ADC的中位线,
∴OE∥AD,
∴△CEO∽△CDA,
∴△OCE的面积=×S△CDA=×4=,
(方法二:∵点E是DC边上的中点,
∴△OCE的面积为△ODC的面积的一半,
∵四边形ABCD是菱形,且周长为16,
∴∠BCD=∠BAD,∠OCD=∠OCB,CD=4,
又∵∠BAD=60°,
∴∠OCD=30°,
∴OD=2,根据勾股定理可求出OC的长,进而可求△OCD的面积.)
故选:A.
【点评】本题考查了菱形的性质、三角形中位线的判断和性质、相似三角形的判断和性质,能够证明OE为△ADC的中位线进而证明△CEO∽△CDA是解题的关键.
4.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是( )
A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC
【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.
【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,
理由:∵DE∥BC,
∴∠DEB=∠EBC,
∵∠EBC=∠EBD,
∴∠EBD=∠DEB,
∴BD=DE,
∵DE∥BC,EF∥AB,
∴四边形DBFE是平行四边形,
∵BD=DE,
∴四边形DBFE是菱形.
其余选项均无法判断四边形DBFE是菱形,
故选:D.
【点评】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5.如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为( )
A.28 B.24 C.32 D.32﹣8
【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.
【解答】解:如图,连接BD,DF,DF交PP′于H.
由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四边形PP′CD是平行四边形,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD是等边三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF=4,
∴DH=4﹣=,
∴平行四边形PP′CD的面积=×8=28.
故选:A.
【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.
6.求证:菱形的两条对角线互相垂直.
已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC⊥BD.
以下是排乱的证明过程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四边形ABCD是菱形;
④∴AB=AD.
证明步骤正确的顺序是( )
A.③→②→①→④ B.③→④→①→② C.①→②→④→③ D.①→④→③→②
【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.
【解答】证明:
∵四边形ABCD是菱形,
∴AB=AD,
∵对角线AC,BD交于点O,
∴BO=DO,
∴AO⊥BD,
即AC⊥BD,
∴证明步骤正确的顺序是③→④→①→②,
故选:B.
【点评】本题考查了菱形对角线互相垂直平分的性质,熟练掌握菱形的性质是解题的关键.
7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移(2﹣1)个单位,再向上平移1个单位
C.向右平移个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.
【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,
过B作BH⊥x轴于H,
∵B(1,1),
∴OB==,
∵A(,0),
∴C(1+,1)
∴OA=OB,
∴则四边形OACB是菱形,
∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,
故选:D.
【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
8.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;
其中正确结论的是( )
A.①②③ B.①②④ C.①③④ D.②③④
【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
【解答】解:∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB,
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正确,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中点,
∴HF=BC,
∵BC=AB,AB=BD,
∴HF=BD,故④说法正确;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∵AE≠EF,
∴四边形ADFE不是菱形;
故②说法不正确;
∴AG=AF,
∴AG=AB,
∵AD=AB,
则AD=4AG,故③说法正确,
故选:C.
【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.
二.填空题(共6小题)
9.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 2 .
【分析】根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.
【解答】解:依照题意画出图形,如图所示.
在Rt△AOB中,AB=2,OB=,
∴OA==1,
∴AC=2OA=2,
∴S菱形ABCD=AC?BD=×2×2=2.
故答案为:2.
【点评】本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.
10.如图,在平行四边形ABCD中,添加一个条件 AB=BC或AC⊥BD 使平行四边形ABCD是菱形.
【分析】根据菱形的判定方法即可判断.
【解答】解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.
故答案为AB=BC或AC⊥BD.
【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是记住菱形的判定方法.
11.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 (﹣5,4) .
【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
∴AB=5,
∴AD=5,
∴由勾股定理知:OD===4,
∴点C的坐标是:(﹣5,4).
故答案为:(﹣5,4).
【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
12.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为 (,﹣) .
【分析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠COB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠COB′=∠BOB′﹣∠COB=45°,所以△OB′H为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.
【解答】解:作B′H⊥x轴于H点,连结OB,OB′,如图,
∵四边形OABC为菱形,
∴OB平分∠AOC,
∴∠COB=30°,
∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,
∴∠BOB′=75°,OB′=OB=2,
∴∠COB′=∠BOB′﹣∠COB=45°,
∴△OB′H为等腰直角三角形,
∴OH=B′H=OB′=,
∴点B′的坐标为(,﹣).
故答案为:(,﹣).
【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
13.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为 10﹣10 cm.
【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC为底.分别求出PA的最小值,即可判断.
【解答】解:连接BD,在菱形ABCD中,
∵∠ABC=120°,AB=BC=AD=CD=10,
∴∠A=∠C=60°,
∴△ABD,△BCD都是等边三角形,
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;
②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;
③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;
综上所述,PA的最小值为10﹣10(cm);
故答案为:10﹣10.
【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
14.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=
60°,连接EF,则△AEF的面积最小值是 3 .
【分析】首先由△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得△AEF是等边三角形,当AE⊥BC时得出△AEF的面积最小值即可.
【解答】解:当AE⊥BC时,
∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
∴∠B=∠ACF=60°,
∵AD∥BC,
∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,
∠AFC=∠D+∠FAD=60°+∠FAD,
∴∠AEB=∠AFC,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(AAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∵当AE⊥BC时,AB=4,
∴AE=,
∴△AEF的面积最小值=,
故答案为:.
【点评】此题考查了菱形的性质,关键是根据等边三角形的判定与性质、全等三角形的判定与性质解答.
三.解答题(共6小题)
15.如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:?ABCD是菱形;
(2)若AB=5,AC=6,求?ABCD的面积.
【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;
(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∵BE=DF,
∴△AEB≌△AFD
∴AB=AD,
∴四边形ABCD是菱形.
(2)连接BD交AC于O.
∵四边形ABCD是菱形,AC=6,
∴AC⊥BD,
AO=OC=AC=×6=3,
∵AB=5,AO=3,
∴BO===4,
∴BD=2BO=8,
∴S平行四边形ABCD=×AC×BD=24.
【点评】本题考查菱形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
16.如图,在?ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.
【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.
【解答】证明:∵在?ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中,
,
∴△DOE≌△BOF(ASA);
∴OE=OF,
又∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形BFDE为菱形.
【点评】此题主要考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.
17.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.
求证:(1)△ADE≌△CDF;
(2)∠BEF=∠BFE.
【分析】(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;
(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.
【解答】证明:(1)∵四边形ABCD是菱形,
∴AD=CD,∠A=∠C,
∵DE⊥BA,DF⊥CB,
∴∠AED=∠CFD=90°,
在△ADE和△CDF,
∵,
∴△ADE≌△CDF;
(2)∵四边形ABCD是菱形,
∴AB=CB,
∵△ADE≌△CDF,
∴AE=CF,
∴BE=BF,
∴∠BEF=∠BFE.
【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等,此题难度一般.
18.求证:对角线互相垂直的平行四边形是菱形.
小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.
已知:如图,在?ABCD中,对角线AC,BD交于点O, AC⊥BD .
求证: 四边形ABCD是菱形 .
【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.
【解答】已知:如图,在?ABCD中,对角线AC,BD交于点O,AC⊥BD,
求证:四边形ABCD是菱形.
证明:
∵四边形ABCD为平行四边形,
∴BO=DO,
∵AC⊥BD,
∴AC垂直平分BD,
∴AB=AD,
∴四边形ABCD为菱形.
故答案为:AC⊥BD;四边形ABCD是菱形.
【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.
19.如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.
(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.
【分析】(1)首先证明AE=CF,OE=OF,结合AO=CO,利用SSS证明△AOE≌△COF;
(2)首先画出α=30°时的图形,根据菱形的性质得到EF⊥AD,解三角形即可求出OE的长,进而得到EF的长.
【解答】解:(1)∵四边形ABCD是菱形,
∴AD∥BC,AO=OC,
∴,
∴AE=CF,OE=OF,
在△AOE和△COF中,
∴△AOE≌△COF.
(2)当α=30°时,即∠AOE=30°,
∵四边形ABCD是菱形,∠ABC=60°,
∴∠OAD=60°,
∴∠AEO=90°,
在Rt△AOB中,
sin∠ABO===,
∴AO=1,
在Rt△AEO中,
cos∠AOE=cos30°==,
∴OE=,
∴EF=2OE=.
【点评】本题主要考查了菱形的性质以及解三角形的知识,解答本题的关键是熟练掌握菱形的性质,解答(2)问时需要正确作出图形,此题难度不大.
20.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
【分析】(1)能.首先证明四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解方程即可解决问题;
(2)分三种情形讨论即可.
【解答】(1)证明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四边形AEFD为平行四边形,
当AE=AD时,四边形AEFD为菱形,
即40﹣4t=2t,解得t=.
∴当t=秒时,四边形AEFD为菱形.
(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,
又AD=40﹣4t,即40﹣4t=t,解得t=8;
②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,
∴AD=2AE,即40﹣4t=4t,解得t=5.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=8或5秒时,△DEF为直角三角形.
【点评】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考常考题型.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/2/4 4:07:13;用户:zhrasce20;邮箱:zhrasce20@163.com;学号:6322261
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)