5.2 等式的基本性质
梅溪中学 刘向萍
(1) (2)
(3) (4)
(5) (6)
下列各式中,哪些是一元一次方程?
?
?
?
?
你会求下列方程的解吗?
它的解到底
怎么求呢?
a
b
b
b
a
探究活动一
1
b
a
1
a
b
1
1
a
b
1
探究活动一
c
b
a
c
a
b
c
c
a
b
c
探究活动一
c
c
c
a
b
探究活动一
引发思考
结合刚才发现的两个规律,你能试着用一句话表述清楚吗?
等式两边同时加上(或都减去)同一个数或式,所得结果仍是等式.
等式的性质1:
用字母可表示为:
如果 ,那么 .
a
b
a
a
a
b
b
a
a
b
b
…
…
b
a
b
a
b
a
b
a
b
a
C个
C个
探究活动二
c ≠ 0
等式的性质2:
等式两边都乘或都除以同一个的数或式(除数不为零),所得结果仍是等式.
用字母可表示为:
如果 ,那么 .
试一试:
1. 判断下面变形是否正确?并说明理由.
?
?
?
?
(1)
(2)
(3)
(4)
看成一个整体
2. 根据下列各题的条件,写出仍然成立的等式.
试一试:
已知 ,判断下列等式是否成立,并说明理由.
例1:
且
试一试:
3. 用适当的数或式子填空,使所得结果仍是等式.
(1)如果 ,
那么 ( )
即 x =
(2)如果 ,
那么 = 6 ( )
等式性质1
等式性质2
结论:
求方程的解,就是将方程变形为 的形式,变形的依据就是等式的基本性质.
例2,利用等式的性质解下列方程,并写出检验过程:
(1)
(2)
利用等式的性质解下列方程,并写出检验过程:
(1)
(2)
练一练
超越自我
课堂总结
1.等式的性质有几条?
2.用字母怎么表示?
3.解方程最终必须将方程 化成什么形式?变形的依据是什么?
作业布置:
1.作业本5.2
2.(选做)全品