课件18张PPT。1.2 二次函数的图像(1)回顾二次函数的定义:
函数y=ax2+bx+c(a,b,c是常数,a≠0)
叫做x的二次函数
思考:你认为判断二次函数的关键是什么?判断一个函数是否是二次函数的关键是:
看二次项的系数是否为0.2.已知函数y=2x2,对于一切x的值,
总有函数值y_______.1.若函数y=(m2+3m-4)x2+(m+2)x+3m是x的
二次函数,则m______3.已知函数y=-2x2,对于一切x的值,
总有函数值y_______.练习:一、正比例函数y=kx(k ≠ 0)其图象是什么。二、一次函数y=kx+b(k ≠ 0)其图象又是什么。正比例函数y=kx(k ≠ 0)其图象是一条经过原点的直线。一次函数y=kx+b(k ≠ 0)其图象也是一条直线。二次函数y=ax2+ bx+c(a ≠ 0)
其图象又是什么呢?。二次函数y=ax2的图像 函数图象画法列表描点连线00.2512.2540.2512.254 描点法用光滑曲线连结时要
自左向右顺次连结0-0.25-1-2.25-4-0.25-1-2.25-4注意:列表时自变量
取值要均匀和对称。00.524.580.524.58列表参考00.524.580.524.5801.5-61.5-6二次函数y=ax2的图象形如物体抛射时
所经过的路线,我们把它叫做抛物线。这条抛物线关于y轴
对称,y轴就是它的
对称轴。 对称轴与抛物线的交点
叫做抛物线的顶点。增减性当x<0时,y随着x的增大而增大;
当x>0时, y随着x的增大而减小。当x<0时,y随着x的增大而减小;
当x>0时, y随着x的增大而增大。(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0。当x=0时,最大值为0。二次函数y=ax2的性质1、顶点坐标与对称轴2、位置与开口方向3、增减性与极值
在同一坐标系内,抛物线y=x2与抛物线
y= -x2的位置有什么关系? 如果在同一坐标系内
画函数y=ax2与y= -ax2的图象,怎样画才简便?
答:抛物线抛物线y=x2与抛物线 y= -x2 既关于x轴对称,
又关于原点对称。只要画出y=ax2与y= -ax2中的一条抛物线,
另一条可利用关于x轴对称或关于原点对称来画。 例1、已知二次函数y=ax2(a≠0)的图像经过点(-2,-3). (1)求a的值,并写出这个二次函数的解析式.
(2)说出这个二次函数的顶点坐标、对称轴、开口方向和图像的位置.试一试:1、函数y=2x2的图象的开口 ,对称轴是 ,顶点是 ;在对称轴的左
侧,y随x的增大而 ,在对称轴的右侧,
y随x的增大而 ; 2、函数y= -3x2的图象的开口 ,对称轴是 ,顶点是 ;在对称轴的左
侧,y随x的增大而 ,在对称轴的右侧,
y随x的增大而 ;
3、观察函数y=x2的图象,则下列判断中正确的是 ( )
A 若a,b互为相反数,则x=a与x=b的函数值相等。
B 对于同一个自变量x,有两个函数值与它对应。
C 对任一个实数y,有两个x和它对应。
D 对任意实数x,都有y>0xyoA练习一、已知抛物线y=ax2经过点A(-2,-8)。
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上。
(3)求出此抛物线上纵坐标为-6的点的坐标。解(1)把(-2,-8)代入y=ax2,得
-8=a(-2)2,解出a= -2,
所求函数解析式为 y= -2x2.y=-2x2练习二、若抛物线y=ax2 (a ≠ 0),过点(-1,3)。
(1)则a的值是 ;
(2)对称轴是 ,开口 。
(3)顶点坐标是 ,顶点是抛物线上的 。
抛物线在x轴的 方(除顶点外)。谈收获:1.二次函数y=ax2(a≠0)的图像是一条抛物线.2.图象关于y轴对称,顶点是坐标原点.3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点.