2020年浙教新版九年级上册数学《第3章 圆的基本性质》单元测试卷
一.选择题(共10小题)
1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是( )
A.a=b B.a<b C.a>b D.不能确定
2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5 B. C.2 D.
3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为( )
A.0.9 米 B.1.0 米 C.1.1米 D.1.2米
4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是( )
A.x+y=90 B.2x+y=90 C.2x+y=180 D.x=y
5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是( )
A.24° B.30° C.36° D.60°
6.下列物体的运动不是旋转的是( )
A.坐在摩天轮里的小朋友 B.正在走动的时针
C.骑自行车的人 D.正在转动的风车叶片
7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )
A.55° B.70° C.125° D.145°
8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是( )
A. B.
C. D.
9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为( )
A.(,)或(﹣,﹣) B.(,)或(﹣,﹣)
C.(﹣,﹣)或(,) D.(﹣,﹣)或(,)
10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )
A.30° B.45° C.60° D.90°
二.填空题(共8小题)
11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D= 度.
12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为 .
13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是 cm.
14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为 .
15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为 .
16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为 (用含α的式子表示).
17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转 度构成的.
18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为 .
三.解答题(共8小题)
19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.
20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.
(1)求证:OD∥AC;
(2)若BC=8,DE=3,求⊙O的直径.
21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.
(1)求此时的水深(即阴影部分的弓形高);
(2)当水位上升到水面宽为0.8米时,求水面上升的高度.
22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.
23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?
24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 (直接写出结论,不必证明)
25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)
(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.
2020年浙教新版九年级上册数学《第3章 圆的基本性质》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是( )
A.a=b B.a<b C.a>b D.不能确定
【分析】根据图形,得两个小半圆的直径之和等于大半圆的直径,则根据圆周长公式,得二人所走的路程相等.
【解答】解:设小明走的半圆的半径是R.则小明所走的路程是:πR.
设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.
故选:A.
【点评】本题考查了圆的认识,注意计算两个小半圆周长的时候,可以提取,则两个小半圆的直径之和是大半圆的直径.
2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5 B. C.2 D.
【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.
【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,
∴M、N分别是AB与AC的中点,
∴MN是△ABC的中位线,
∴BC=2MN=2,
故选:C.
【点评】本题考查的是垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.
3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为( )
A.0.9 米 B.1.0 米 C.1.1米 D.1.2米
【分析】作OC⊥AB交圆于C,交AB于D,连接OA,根据勾股定理求出AD,根据垂径定理解答.
【解答】解:作OC⊥AB交圆于C,交AB于D,连接OA,
则OA=1.3,OD=1.2,
由勾股定理得,AD==0.5,
则AB=2AD=1.0(米),
故选:B.
【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.
4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是( )
A.x+y=90 B.2x+y=90 C.2x+y=180 D.x=y
【分析】连接BC,根据圆周角定理求出∠B,根据平行线的性质,圆内接四边形的性质,三角形内角和定理计算即可.
【解答】解:连接BC,
由圆周角定理得,∠BAC=∠BOC=x°,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠B=90°﹣x°,
∵四边形ABCD是⊙O的内接四边形,
∴∠D=180°﹣∠B=90°+x°,
∵OA=OC,
∴∠OCA=∠OAC=x°,
∵AD∥OC,
∴∠DAC=∠OCA=x°,
∴∠ACD=180°﹣∠DAC﹣∠D,即y=180°﹣x°﹣(90°+x°)=90°﹣x°,
∴x+y=90,
故选:A.
【点评】本题考查的是圆周角定理,圆心角、弧、弦的关系定理,掌握圆内接四边形的性质,圆周角定理是解题的关键.
5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是( )
A.24° B.30° C.36° D.60°
【分析】根据等腰三角形的性质、三角形的外角的性质计算,得到答案.
【解答】解:∵OE=OD,DC=OE,
∴DC=DO,
∴∠C=∠DOC,
∴∠ODE=2∠C,
∵OD=OE,
∴∠ODE=∠OED,
∴∠OED=2∠C,
∵∠BOE=∠C+∠OED,
∴∠C+2∠C=72°,
解得,∠C=24°,
故选:A.
【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握等腰三角形的性质、三角形的外角的性质是解题的关键.
6.下列物体的运动不是旋转的是( )
A.坐在摩天轮里的小朋友 B.正在走动的时针
C.骑自行车的人 D.正在转动的风车叶片
【分析】根据旋转的定义来判断即可.
【解答】解:骑自行车的人在前进的过程中没有发生旋转.
故选:C.
【点评】本题主要考查了生活中的旋转现象,解题的关键是要正确理解旋转的特征:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )
A.55° B.70° C.125° D.145°
【分析】首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据对应点与旋转中心所连线段的夹角等于旋转角,可得旋转角的度数等于∠BAB1的度数,据此解答即可.
【解答】解:∵∠B=35°,∠C=90°,
∴∠BAC=180°﹣35°﹣90°=55°,
∵点C,A,B1在同一条直线上,
∴∠BAB1=180°﹣∠BAC=180°﹣55°=125°,
即旋转角等于125°.
故选:C.
【点评】此题主要考查了旋转的性质和应用,要熟练掌握,解答此题的关键是要明确:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是( )
A. B.
C. D.
【分析】观察图形,从图形的性质可以确定旋转角,然后进行判断即可得到答案.
【解答】解:A图形顺时针旋转120°后,能与原图形完全重合,A不正确;
B图形顺时针旋转90°后,能与原图形完全重合,B不正确;
C图形顺时针旋转180°后,能与原图形完全重合,C不正确;
D图形顺时针旋转72°后,能与原图形完全重合,D正确,
故选:D.
【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为( )
A.(,)或(﹣,﹣) B.(,)或(﹣,﹣)
C.(﹣,﹣)或(,) D.(﹣,﹣)或(,)
【分析】根据题意只研究点B的旋转即可,OB与x轴夹角为45°,分别按顺时针和逆时针旋转75°后,与y轴负向、x轴正向分别夹角为30°,由此计算坐标即可.
【解答】解:由点B坐标为(2,﹣2)
则OB=2,且OB与x轴、y轴夹角为45°
当点B绕原点逆时针转动75°时,
OB1与x轴正向夹角为30°
则B1到x轴、y轴距离分别为,,则点B1坐标为(,);
同理,当点B绕原点顺时针转动75°时,
OB1与y轴负半轴夹角为30°,
则B1到x轴、y轴距离分别为,,则点B1坐标为(﹣,﹣);
故选:C.
【点评】本题为坐标旋转变换问题,考查了图形旋转的性质、特殊角锐角三角函数值,解答时注意分类讨论和确定象限符号.
10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )
A.30° B.45° C.60° D.90°
【分析】根据旋转的性质,观察图形,中心角是由四个角度相同的角组成,结合周角是360°求解.
【解答】解:∵中心角是由四个角度相同的角组成,
∴旋转的角度是360°÷4=90°.
故选:D.
【点评】本题把旋转的性质和一个周角是360°结合求解.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
二.填空题(共8小题)
11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D= 25 度.
【分析】解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.
【解答】解:连接OB,
∵BD=OA,OA=OB
所以△AOB和△BOD为等腰三角形,
设∠D=x度,则∠OBA=2x°,
因为OB=OA,
所以∠A=2x°,
在△AOB中,2x+2x+(105﹣x)=180,
解得x=25,
即∠D=25°.
【点评】此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.
12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为 或 .
【分析】分AB、CD在圆心O的两侧、AB、CD在圆心O的同侧两种情况,根据垂径定理、勾股定理计算即可.
【解答】解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,
∵AB∥CD,MN⊥AB,
∴AP=AB=4,MN⊥CD,
∴CQ=CD=3,
在Rt△OAP中,OP==3,
同理:OQ=4,
则PQ=OQ+OP=7,
∴PC===,
当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,
∴PC===;
故答案为:或.
【点评】本题考查了勾股定理和垂径定理以及分类讨论,掌握垂径定理和勾股定理,灵活运用分类讨论思想是解题的关键.
13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是 37.5 cm.
【分析】根据切线的性质和已知条件证出O、D、C共线,根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.
【解答】解:如图,设点O为圆环的圆心,连接OA和OD,
∵AB是内圆O的切线,
∴AB⊥OD,
∴∠ADO=90°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ODC=180°,
∴O、D、C共线,
∴OC⊥AB,
∴AD=AB=30cm,
∴设OA为rcm,则OD=(r﹣15)cm,
根据题意得:r2=(r﹣15)2+302,
解得:r=37.5.
∴这个摆件的外圆半径长为37.5cm;
故答案为:37.5.
【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.
14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为 或2 .
【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,
【解答】解:过B作直径,连接AC交AO于E,
∵点B为的中点,
∴BD⊥AC,
如图①,
∵点D恰在该圆直径的三等分点上,
∴BD=×2×3=2,
∴OD=OB﹣BD=1,
∵四边形ABCD是菱形,
∴DE=BD=1,
∴OE=2,
连接OC,
∵CE==,
∴边CD==;
如图②,BD=×2×3=4,
同理可得,OD=1,OE=1,DE=2,
连接OC,
∵CE===2,
∴边CD===2,
故答案为或2.
【点评】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.
15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为 105° .
【分析】连结AC并且延长至E,根据旋转的性质和平角的定义,由角的和差关系即可求解.
【解答】解:如图:连结AC并且延长至E,
∠DCE=180°﹣∠DCB﹣∠ACB=105°.
故灰斗柄AB绕点C转动的角度为105°.
故答案为:105°.
【点评】考查了生活中的旋转现象,本题关键是由角的和差关系得到∠DCE的度数.
16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为 2α (用含α的式子表示).
【分析】由直角三角形的性质得出∠B=90°﹣α,由旋转的性质得出CD=CB,由等腰三角形的性质得出∠CDB=∠B=90°﹣α,由三角形内角和定理即可得出答案.
【解答】解:∵∠ACB=90°,∠A=α,
∴∠B=90°﹣α,
由旋转的性质得:CD=CB,
∴∠CDB=∠B=90°﹣α,
∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣2(90°﹣α)=2α;
故答案为:2α.
【点评】本题考查了旋转的性质、等腰三角形的性质、直角三角形的性质等知识;熟练掌握旋转的性质和等腰三角形的性质是解题的关键.
17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转 36 度构成的.
【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.
【解答】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.
故答案为:36.
【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为 (10090,4) .
【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求得B2018的坐标.
【解答】解:∵AO=,BO=4,
∴AB=,
∴OA+AB1+B1C2=++4=10,
∴B2的横坐标为:10,且B2C2=4,
∴B4的横坐标为:2×10=20,
∴点B2018的横坐标为:1009×10=10090.
∴点B2018的纵坐标为:4.
故点B2018的坐标为(10090,4).
故答案为:(10090,4).
【点评】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.
三.解答题(共8小题)
19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.
【分析】先作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆即可.
【解答】解:这样的圆能画2个.如图:
作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,
则⊙O1和⊙O2为所求圆.
【点评】本题考查了圆的认识,解题的关键是找出圆心O1和O2.
20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.
(1)求证:OD∥AC;
(2)若BC=8,DE=3,求⊙O的直径.
【分析】(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;
(2)令⊙O的半径为r,由垂径定理得出BE=CE=BC=4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.
【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,
∵OD⊥BC,∴∠OEB=∠C=90°,
∴OD∥AC;
(2)解:令⊙O的半径为r,
根据垂径定理可得:BE=CE=BC=4,
由勾股定理得:r2=42+(r﹣3)2,
解得:r=,
所以⊙O的直径为.
【点评】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.
21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.
(1)求此时的水深(即阴影部分的弓形高);
(2)当水位上升到水面宽为0.8米时,求水面上升的高度.
【分析】(1)作半径OD⊥AB于C,连接OB,根据勾股定理计算;
(2)分水位上升到圆心以下、水位上升到圆心以上两种情况,根据垂径定理、勾股定理计算即可.
【解答】解:(1)作半径OD⊥AB于C,连接OB,
由垂径定理得:BC=AB=0.3,
在Rt△OBC中,OC==0.4
CD=0.5﹣0.4=0.1,
此时的水深为0.1米;
(2)当水位上升到圆心以下时 水面宽0.8 米
则OC==0.3,
水面上升的高度为:0.3﹣0.2=0.1米;
当水位上升到圆心以上时,水面上升的高度为:0.4+0.3=0.7米,
综上可得,水面上升的高度为 0.1米或 0.7米.
【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.
22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.
【分析】连接DF,根据圆内接四边形的性质得到∠CAE=∠DFE、∠B=∠CDE,根据圆心角、弧、弦的关系定理得到BC=DE,根据全等三角形的判定定理证明即可.
【解答】证明:∵四边形ABCD内接于⊙O,
∴∠ABC=∠CDE,
∵=,
∴∠BAC=∠DCE,
在△CDE和△ABC中,
,
∴△CDE≌△ABC(AAS).
【点评】本题考查的是圆心角、弧、弦的关系、全等三角形的判定、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.
23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?
【分析】利用分针与时针的速度关系,列出方程求出时针走的圆心角的度数,再由时针走1°相当于2分钟,即可求出准确时间.
【解答】解:分针的速度是时针速度的12倍,设时针走了x°,则分针走了12x°,
∵小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),且时针与分针刚好重合在一起.
∴12x°﹣x°=120°,解得x°=°,
∵时针走1°相当于2分钟,
∴时针走过的分钟为°×2=21分.
∴这时准确的时间为4时21分.
【点评】本题主要考查了生活中的旋转现象,解题的关键是求出时针走了多少度.
24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 OC=OM﹣ON (直接写出结论,不必证明)
【分析】(1)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论;
(2)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论.
【解答】(1)证明:作∠OCG=60°,交OA于G,如图1所示:
∵∠AOB=120°,OC平分∠AOB,
∴∠CON=∠COG=60°,
∴∠OCG=∠COG,
∴OC=CG,
∴△OCG是等边三角形,
∴OC=OG,∠CGM=60°=∠CON,
∵∠MCN=∠OCG=60°,
∴∠OCN=∠GCM,
在△OCN和△GCM中,,
∴△OCN≌△GCM(ASA),
∴ON=GM,
∵OG=OM+GM,
∴OC=OM+ON;
(2)解:OC=OM﹣ON,理由如下:
作∠OCG=60°,交OA于G,如图2所示:
∵∠AOB=120°,OC平分∠AOB,
∴∠CON=∠COG=60°,
∴∠CON=120°,∠OCG=∠COG,
∴OC=CG,
∴△OCG是等边三角形,
∴OC=OG,∠CGO=60°,
∴∠CGM=120°=∠CON,
∵∠MCN=∠OCG=60°,
∴∠OCN=∠GCM,
在△OCN和△GCM中,,
∴△OCN≌△GCM(ASA),
∴ON=GM,
∵OG=OM﹣GM,
∴OC=OM﹣ON;
故答案为:OC=OM﹣ON
【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、旋转的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)
(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
【分析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;
(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;
(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.
【解答】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,﹣2);
(2)如图所示,A2的坐标为(3,﹣5);B2的坐标为(2,﹣1);C2的坐标为(1,﹣3);
(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).
【点评】本题主要考查平移变换和旋转变换,熟练掌握平移变换和旋转变换的定义是解题的关键.
26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.
【分析】根据关于原点成中心对称的图形横纵坐标都互为相反数即可得结论.
【解答】解:如图所示:
△A1B1C1即为所求作的图形.
A1(3,﹣5),B1(2,﹣1),C1(1,﹣3).
【点评】本题考查了旋转变换、中心对称图形,解决本题的关键是掌握中心对称图形的坐标特征.