2020年春浙教版八年级下册第5章《特殊平行四边形》测试A卷
考试时间:100分钟 满分:120分
班级:___________姓名:___________学号:___________成绩:___________
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)一个菱形的两条对角线分别是6cm和8cm,则这个菱形的面积等于( )
A.24cm2 B.48cm2 C.12cm2 D.18cm2
2.(3分)菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为( )
A.4.5cm B.4cm C.5cm D.4cm
3.(3分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四个判断中,不正确的是( )
A.四边形AEDF是平行四边形
B.如果AD=EF,那么四边形AEDF是矩形
C.如果AD平分∠EAF,那么四边形AEDF是菱形
D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
4.(3分)如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )
A.5 B.2 C. D.
5.(3分)在四边形ABCD中,AB∥CD,AB=AD,添加下列条件不能推得四边形ABCD为菱形的是( )
A.AB=CD B.AD∥BC C.BC=CD D.AB=BC
6.(3分)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:
①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.
其中正确的是( )
A.①④ B.①③④ C.①②③ D.②③④
7.(3分)如图在矩形ABCD中,BC=8,CD=6,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则△BDE的面积为( )
A. B. C.21 D.24
8.(3分)已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是( )
A.如果AB=CD,AC=BD,那么四边形ABCD是矩形
B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形
C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形
D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形
9.(3分)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是( )
A.3 B. C. D.4
10.(3分)如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为( )
A. B. C.2﹣ D.﹣1
11.(3分)将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是( )
A.(4,2) B.(2,4) C.(,3) D.(3,)
12.(3分)如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB; ②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是( )
A.①④ B.①③④ C.①②③ D.②③④
二.填空题(共6小题,满分24分,每小题4分)
13.(4分) 的平行四边形叫做菱形.
14.(4分)边长为5的正方形的对角线长是 .
15.(4分)如图,菱形ABCD的对角线AC、BD相交于点O,过点O作直线EF分别与AB、DC相交于E、F两点,若AC=10,BD=4,则图中阴影部分的面积等于 .
16.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
17.(4分)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快 s后,四边形ABPQ成为矩形.
18.(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
三.解答题(共7小题,满分60分)
19.(6分)已知:如图,在?ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
20.(8分)在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:
(1)△BFO≌△DEO.
(2)四边形AFCE是矩形.
21.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.
22.(8分)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.
(1)若DG=2,求证:四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积.
23.(8分)如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC、AD于点E和F,EF交AC于点O.
(1)求证:四边形AECF是菱形;
(2)若AB=6,AD=8,求四边形AECF的周长.
24.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
25.(12分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
参考答案与试题解析
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)一个菱形的两条对角线分别是6cm和8cm,则这个菱形的面积等于( )
A.24cm2 B.48cm2 C.12cm2 D.18cm2
【分析】根据菱形的面积公式:菱形的面积=两条对角线的乘积的一半即可求得其面积.
【解答】解:∵菱形的面积=×两条对角线的乘积=×6×8=24cm2,
故选:A.
2.(3分)菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为( )
A.4.5cm B.4cm C.5cm D.4cm
【分析】根据菱形的性质求出菱形的边长以及两邻角的度数.又根据菱形的对角线互相垂直平分求出对角线的长.
【解答】解:由已知可得,菱形的边长为5cm,两邻角分别为60°,120°.
又菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得30°的角,所对边为2.5cm,则此条对角线长5cm.
根据勾股定理可得,另一对角线长的一半为cm,则较长的对角线长为5cm.故本题选C.
3.(3分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四个判断中,不正确的是( )
A.四边形AEDF是平行四边形
B.如果AD=EF,那么四边形AEDF是矩形
C.如果AD平分∠EAF,那么四边形AEDF是菱形
D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
【分析】两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.
【解答】解:A、因为DE∥CA,DF∥BA,所以四边形AEDF是平行四边形.故A选项正确.
B、如果AD=EF,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.
C、因为AD平分∠EAF,所以∠EAD=∠FAD,∵∠FAD=∠EDA,∠EAD=∠FDA,∴EAD=∠EDA,∴AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.
D、如果AD⊥BC且AB=AC,所以四边形AEDF是菱形,故D选项错误.
故选:D.
4.(3分)如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )
A.5 B.2 C. D.
【分析】首先利用菱形的性质结合勾股定理得出BC的长,再利用三角形面积求出答案.
【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,
∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,
∴BC==5(cm),
∴AE×BC=BO×AC
故5AE=24,
解得:AE=.
故选:C.
5.(3分)在四边形ABCD中,AB∥CD,AB=AD,添加下列条件不能推得四边形ABCD为菱形的是( )
A.AB=CD B.AD∥BC C.BC=CD D.AB=BC
【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.
【解答】解:A选项:若AB=CD,∵AB∥CD,
∴四边形ABCD是平行四边形,
当AB=AD可判定四边形ABCD是菱形;
B选项:当AD∥BC时,又AB∥CD,
∴四边形ABCD是平行四边形,
当AB=AD可判定四边形ABCD是菱形;
C选项:当BC=CD时,△ABC≌△ACD(SAS),
∴∠A=∠C.
∵AB∥CD,
∴∠C+∠ABC=180°.
∴∠A+∠ABC=180°.
∴AD∥BC.
又AB∥CD,
∴四边形ABCD是平行四边形,
当AB=AD可判定四边形ABCD是菱形;
D选项只能说明四边形的三条边相等,所以不能判定是菱形.
故选:D.
6.(3分)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:
①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.
其中正确的是( )
A.①④ B.①③④ C.①②③ D.②③④
【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;
先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;
由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;
证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.
【解答】解:∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位线,
∴OG=CD=AB,
∴①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四边形ABDE是菱形,
④正确;
∴AD⊥BE,
由菱形的性质得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,
∴②不正确;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△AOG的面积=△BOG的面积,
∴S四边形ODGF=S△ABF;
③不正确;
正确的是①④.
故选:A.
7.(3分)如图在矩形ABCD中,BC=8,CD=6,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则△BDE的面积为( )
A. B. C.21 D.24
【分析】先根据矩形的性质得AB=CD=6,AD=BC=8,AD∥BC,再根据折叠的性质得∠DBC=∠DBE,由AD∥BC得∠DBC=∠BDE,所以∠BDE=∠EBD,根据等腰三角形的判定得EB=ED,设ED=x,则EB=x,AE=8﹣x,在Rt△ABE根据勾股定理得到62+(8﹣x)2=x2,求出x的值,然后根据三角形面积公式求解即可.
【解答】解:∵四边形ABCD为矩形,
∴AB=CD=6,AD=BC=8,AD∥BC,
∵矩形纸片ABCD沿对角线BD折叠,点C落在点E处,
∴∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠BDE,
∴∠BDE=∠EBD,
∴EB=ED,
设ED=x,则EB=x,AE=8﹣x,
在Rt△ABE中,∵AB2+AE2=BE2,
∴62+(8﹣x)2=x2,
解得x=,
∴DE=,
∴△BDE的面积=AB?DE=×6×=.
故选:A.
8.(3分)已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是( )
A.如果AB=CD,AC=BD,那么四边形ABCD是矩形
B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形
C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形
D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形
【分析】根据矩形和菱形的判定定理进行判断即可.
【解答】解:A、如果AB=CD,AC=BD,那么四边形ABCD是等腰梯形,不一定矩形;
B、如果AD∥BC,AB∥CD,则四边形ABCD是平行四边形,又AC=BD,那么四边形ABCD是矩形;
C、如果AD∥BC,AD=BC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;
D、如果AD∥BC,OA=OC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;
故选:A.
9.(3分)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是( )
A.3 B. C. D.4
【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.
【解答】解:∵四边形COED是矩形,
∴CE=OD,
∵点D的坐标是(1,3),
∴OD==,
∴CE=,
故选:C.
10.(3分)如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为( )
A. B. C.2﹣ D.﹣1
【分析】根据正方形的性质,由勾股定理得BD与AC的值,从而得到OD,OC的值,根据三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例,OE:EC=OD:DC,从而可求得OE的长.
【解答】解:方法一:∵AB=2
∴BD=AC=2,OD=OC=
∵DE平分∠ODC交OC于点E,
∴OE:EC=OD:DC
∴OE:(﹣OE)=:2
∴OE=2﹣;
方法二:过点E作EF⊥DC于点F,
∵DE平分∠ODC交OC于点E,∠DOE=∠DFE=90°,
∴EO=EF,
∵AB=2,
∴BD=AC=2,OD=OC=,
∴设EO=EF=x,则EC=﹣x,
∴x2+x2=(﹣x)2,
解得:x1=2﹣,x2=﹣2﹣(不合题意舍去),
故选:C.
11.(3分)将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是( )
A.(4,2) B.(2,4) C.(,3) D.(3,)
【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM=,MO=3,进而得出答案.
【解答】解:如图:过点A作AE⊥x轴于点E,过点B作BF⊥⊥x轴于点F,过点A作AN⊥BF于点N,
过点C作CM⊥x轴于点M,
∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,
∴∠EAO=∠COM,
又∵∠AEO=∠CMO,
∴∠AEO∽△COM,
∴==,
∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,
∴∠BAN=∠EAO=∠COM,
在△ABN和△OCM中
,
∴△ABN≌△OCM(AAS),
∴BN=CM,
∵点A(﹣1,2),点B的纵坐标是,
∴BN=,
∴CM=,
∴MO=3,
∴点C的坐标是:(3,).
故选:D.
12.(3分)如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB; ②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是( )
A.①④ B.①③④ C.①②③ D.②③④
【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;
先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;
由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;
证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.
【解答】解:∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位线,
∴OG=CD=AB,
∴2OG=AB,①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四边形ABDE是菱形,
④正确;
∴AD⊥BE,
由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),
∴②不正确;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),
∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△AOG的面积=△BOG的面积,
∴S四边形ODGF=S△ABF;
③不正确;
正确的是①④.
故选:A.
二.填空题(共6小题,满分24分,每小题4分)
13.(4分) 对角线互相垂直或有一组邻边相等 的平行四边形叫做菱形.
【分析】菱形的判定方法有三种:
①定义:一组邻边相等的平行四边形是菱形;
②四边相等;
③对角线互相垂直平分的四边形是菱形.
【解答】解:根据菱形的判定方法可知:对角线互相垂直或有一组邻边相等的平行四边形叫做菱形.
故答案为对角线互相垂直或有一组邻边相等.
14.(4分)边长为5的正方形的对角线长是 5 .
【分析】由正方形的性质和勾股定理即可得出答案.
【解答】解:如图所示:
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC=5,AC=BD,
∴BD=AC===5;
故答案为:5.
15.(4分)如图,菱形ABCD的对角线AC、BD相交于点O,过点O作直线EF分别与AB、DC相交于E、F两点,若AC=10,BD=4,则图中阴影部分的面积等于 5 .
【分析】根据菱形的性质可证出△CFO≌△AEO,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.
【解答】解:∵四边形ADCB为菱形,
∴OC=OA,AB∥CD,∠FCO=∠OAE,
∵∠FOC=∠AOE,
△CFO≌△AEO(ASA),
∴S△CFO=S△AOE,
∴S△CFO+S△EBO=S△AOB,
∴S△AOB=SABCD=×AC?BD=×10×4=5,
故答案为:5.
16.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 8 .
【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.
【解答】解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF==2,
由勾股定理得:DE===2,
∴四边形BEDF的周长=4DE=4×=8,
故答案为:8.
17.(4分)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快 4 s后,四边形ABPQ成为矩形.
【分析】根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.
【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20﹣2x.
解得x=4,
故答案为:4.
18.(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 (2,4)或(3,4)或(8,4) .
【分析】当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.
【解答】解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:
(1)如答图①所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD﹣DE=5﹣3=2,
∴此时点P坐标为(2,4);
(2)如答图②所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE===3,
∴此时点P坐标为(3,4);
(3)如答图③所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);
故答案为:(2,4)或(3,4)或(8,4);
三.解答题(共7小题,满分60分)
19.(6分)已知:如图,在?ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
【分析】(1)由平行四边形的性质得出∠B=∠D,AB=CD,AD∥BC,由已知得出∠AEB=∠AEC=∠CFD=∠AFC=90°,由AAS证明△ABE≌△CDF即可;
(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,AD∥BC,
∵AE⊥BC,CF⊥AD,
∴∠AEB=∠AEC=∠CFD=∠AFC=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS);
(2)证明:∵AD∥BC,
∴∠EAF=∠AEB=90°,
∴∠EAF=∠AEC=∠AFC=90°,
∴四边形AECF是矩形.
20.(8分)在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:
(1)△BFO≌△DEO.
(2)四边形AFCE是矩形.
【分析】(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
(2)由全等三角形的性质得出OF=OE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,AD∥BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,
,
∴△BFO≌△DEO(ASA);
(2)由(1)得:△BFO≌△DEO,
∴OF=OE,
又∵OA=OC,
∴四边形AFCE是平行四边形,
∵AF⊥BC,
∴∠AFC=90°,
∴四边形AFCE是矩形.
21.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.
【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;
(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.
【解答】解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴?ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
22.(8分)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.
(1)若DG=2,求证:四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积.
【分析】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;
(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.
【解答】(1)证明:∵四边形EFGH为菱形,
∴HG=EH,
∵AH=2,DG=2,
∴DG=AH,
在Rt△DHG和△AEH中,
,
∴Rt△DHG≌△AEH,
∴∠DHG=∠AHE,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∵四边形EFGH为菱形,
∴四边形EFGH为正方形;
(2)解:作FQ⊥CD于Q,连结GE,如图,
∵四边形ABCD为矩形,
∴AB∥CD,
∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,
∵四边形EFGH为菱形,
∴HE=GF,HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠QGF,
在△AEH和△QGF中
,
∴△AEH≌△QGF,
∴AH=QF=2,
∵DG=6,CD=8,
∴CG=2,
∴△FCG的面积=CG?FQ=×2×2=2.
23.(8分)如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC、AD于点E和F,EF交AC于点O.
(1)求证:四边形AECF是菱形;
(2)若AB=6,AD=8,求四边形AECF的周长.
【分析】(1)根据四边相等的四边形是菱形即可判断;
(2)设AE=EC为x,利用勾股定理解答即可.
【解答】(1)证明:∵四边形ABCD是矩形
∴AD∥BC,
∴∠DAC=∠ACB,
∵EF垂直平分AC,
∴AF=FC,AE=EC,
∴∠FAC=∠FCA,
∴∠FCA=∠ACB,
∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,
∴∠CFE=∠CEF,
∴CE=CF,
∴AF=FC=CE=AE,
∴四边形AECF是菱形.
(2)设AE=EC为x,则BE=(8﹣x)
在Rt△ABE中,AE2=AB2+BE2,
即x2=62+(8﹣x)2,
解得:x=,
所以四边形AECF的周长==25.
24.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
【解答】(1)证明:在正方形ABCD中,
∵,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)解:GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°.
∵,
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
25.(12分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
【分析】(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(注:本小题也可以通过证明四边形ECGH为矩形得出结论)
(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,依据EC=PD,即可得出AD=AP+PD=AC+EC;
(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AEGF是平行四边形,即可得到四边形AEGF是菱形.
【解答】解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG,
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∴∠C=∠DHG=90°,∠CGE=∠GED,
∵F是AD的中点,FG∥AE,
∴H是ED的中点,
∴FG是线段ED的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD;
(2)证明:过点G作GP⊥AB于P,
∴GC=GP,而AG=AG,
∴△CAG≌△PAG,
∴AC=AP,
由(1)可得EG=DG,
∴Rt△ECG≌Rt△DPG,
∴EC=PD,
∴AD=AP+PD=AC+EC;
(3)四边形AEGF是菱形,
证明:∵∠B=30°,
∴∠ADE=30°,
∴AE=AD,
∴AE=AF=FG,
由(1)得AE∥FG,
∴四边形AEGF是平行四边形,
∴四边形AEGF是菱形.