2.3(1) 一元二次方程的应用
(时间45分钟 满分100分)
一.选择题(每小题7分,共42分)
1.(2019?日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是( )
A.1000(1+x)2=3990
B.1000+1000(1+x)+1000(1+x)2=3990
C.1000(1+2x)=3990
D.1000+1000(1+x)+1000(1+2x)=3990
2.(2019?恩施州)某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )
A.8% B.9% C.10% D.11%
3.(2019?鸡西)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )
A.4 B.5 C.6 D.7
4.(2019?哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20% B.40% C.18% D.36%
5.(2019秋?丰南区期中)有2人患了流感,经过两轮传染后共有98人患了流感,设每轮传染中平均一个人传染了x人,则x的值为( )
A.5 B.6 C.7 D.8
6.(2018春?开福区校级期中)某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为( )
A.3万元 B.5万元
C.8万元 D.3万元或5万元
二.填空题(每小题7分,共28分)
7.(2019?青海)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为 .
8.(2019秋?沙坪坝区校级期中)近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为 元.
9.(2019秋?孟津县期中)两数的和为6,这两数的积为7,则这两数是 .
10.(2019秋?邓州市期中)2018﹣2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有 支.
三.解答题(共30分)
11.(10分)(2019?东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?
12.(10分)(2019?大连)某村2016年的人均收入为20000元,2018年的人均收入为24200元
(1)求2016年到2018年该村人均收入的年平均增长率;
(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?
13.(10分)(2019?宜昌)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.
(1)求2018年甲类芯片的产量;
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.
2.3(1) 一元二次方程的应用
参考答案与试题解析
一.选择题
1.(2019?日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是( )
A.1000(1+x)2=3990
B.1000+1000(1+x)+1000(1+x)2=3990
C.1000(1+2x)=3990
D.1000+1000(1+x)+1000(1+2x)=3990
【分析】设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.
【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,
依题意,得1000+1000(1+x)+1000(1+x)2=3990.
故选:B.
2.(2019?恩施州)某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )
A.8% B.9% C.10% D.11%
【分析】设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
【解答】解:设该商店的每月盈利的平均增长率为x,根据题意得:
240000(1+x)2=290400,
解得:x1=10%,x2=﹣2.1(舍去).
故选:C.
3.(2019?鸡西)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )
A.4 B.5 C.6 D.7
【分析】设这种植物每个支干长出x个小分支,根据主干、支干和小分支的总数是43,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解答】解:设这种植物每个支干长出x个小分支,
依题意,得:1+x+x2=43,
解得:x1=﹣7(舍去),x2=6.
故选:C.
4.(2019?哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20% B.40% C.18% D.36%
【分析】设降价得百分率为x,根据降低率的公式a(1﹣x)2=b建立方程,求解即可.
【解答】解:设降价的百分率为x
根据题意可列方程为25(1﹣x)2=16
解方程得,(舍)
∴每次降价得百分率为20%
故选:A.
5.(2019秋?丰南区期中)有2人患了流感,经过两轮传染后共有98人患了流感,设每轮传染中平均一个人传染了x人,则x的值为( )
A.5 B.6 C.7 D.8
【分析】根据题意列出方程,求出方程的解即可得到结果.
【解答】解:根据题意得:2+2x+x(2+2x)=98,
解得:x=6或x=﹣8(舍去),
则x的值为6.
故选:B.
6.(2018春?开福区校级期中)某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为( )
A.3万元 B.5万元
C.8万元 D.3万元或5万元
【分析】根据题意可以列出相应的方程,然后解方程即可解答本题.
【解答】解:设这种机床每台的售价应定为x万元,
x(60﹣)=2×60×(1+25%),
解得x1=3,x2=5,
故选:D.
二.填空题(共12小题)
7.(2019?青海)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为 10% .
【分析】设平均每次降价的百分比是x,则第一次降价后的价格为60×(1﹣x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x)元,从而列出方程,然后求解即可.
【解答】解:设平均每次降价的百分比是x,根据题意得:
60(1﹣x)2=48.6,
解得:x1=0.1=10%,x2=1.9(不合题意,舍去),
答:平均每次降价的百分比是10%;
故答案为:10%.
8.(2019秋?沙坪坝区校级期中)近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为 5820 元.
【分析】根据题意可得A礼盒的成本价格,进而可求出1个福字饼和1个禄字饼的成本和为40元,再设一个福字饼成本x元,一个禄字饼成本(40﹣x)元,A种礼盒m袋,B种礼盒n袋,列出方程得到xn=20n+250,最后求出每日卖出礼盒的实际总成本即可.
【解答】解:设A礼盒成本价格a元,根据题意,得
96﹣a=20%a,
解得a=80,
∵A礼盒装有2个福字饼,2个禄字饼,
∴2个福字饼和2个禄字饼的成本价格为80元,
∴1个福字饼和1个禄字饼的成本价格为40元,
设个福字饼成本价x元,1个禄字饼成本价(40﹣x)元,则1个寿字饼成本价为(40﹣x)元,
A种礼盒m袋,B种礼盒n袋,
根据题意,得
m+n=78
80m+n[x+2(40﹣x)+3×(40﹣x)]+500=80m+n[(40﹣x+2x+3×(40﹣x)]
∴xn=20n+250
设A、B两种礼盒实际成本为w元,则有
w=80m+xn+2n(40﹣x)+n×(40﹣x)
=80(m+n)﹣420
=80×78﹣420
=5820.
故答案为5820.
9.(2019秋?孟津县期中)两数的和为6,这两数的积为7,则这两数是 .
【分析】设一个数是x,则另一个数是(6﹣x),根据“两数积为7”列出方程.
【解答】解:设一个数是x,则另一个数是(6﹣x),则
x(6﹣x)=7,
解得:x=3+或x=3﹣,
6﹣x=3﹣或3+,
∴这两个数为,
故答案为:.
10.(2019秋?邓州市期中)2018﹣2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有 20 支.
【分析】设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛380场,可列出方程.
【解答】解:设参赛队伍有x支,则
x(x﹣1)=380.
解得x=20.
故答案是:20.
三.解答题(共9小题)
11.(2019?东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?
【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.
【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,
依题意,得:(x﹣100)[300+5(200﹣x)]=32000,
整理,得:x2﹣360x+32400=0,
解得:x1=x2=180.
180<200,符合题意.
答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.
12.(2019?大连)某村2016年的人均收入为20000元,2018年的人均收入为24200元
(1)求2016年到2018年该村人均收入的年平均增长率;
(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?
【分析】(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论.
【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,
根据题意得:20000(1+x)2=24200,
解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).
答:2016年到2018年该村人均收入的年平均增长率为10%.
(2)24200×(1+10%)=26620(元).
答:预测2019年村该村的人均收入是26620元.
13.(2019?宜昌)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.
(1)求2018年甲类芯片的产量;
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.
【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;
(2)2018年丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000(万块),2018年HW公司手机产量为2800÷10%=28000(万部),由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.
【解答】解:(1)设2018年甲类芯片的产量为x万块,
由题意得:x+2x+(x+2x)+400=2800,
解得:x=400;
答:2018年甲类芯片的产量为400万块;
(2)2018年丙类芯片的产量为3x+400=1600(万块),
设丙类芯片的产量每年增加的数量为y万块,
则1600+1600+y+1600+2y=14400,
解得:y=3200,
∴丙类芯片2020年的产量为1600+2×3200=8000(万块),
2018年HW公司手机产量为2800÷10%=28000(万部),
则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),
设m%=t,
400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),
整理得:3t2+2t﹣56=0,
解得:t=4,或t=﹣(舍去),
∴t=4,
∴m%=4,
∴m=400;
答:丙类芯片2020年的产量为8000万块,m=400.