第四章 平行四边形单元能力测试题(含解析)

文档属性

名称 第四章 平行四边形单元能力测试题(含解析)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2020-03-12 19:57:36

图片预览

文档简介

第四章 综合能力测试卷
(时间120分钟 满分120分)
一.选择题(每小题3分,共30分)
1.(2019秋?武冈市期中)三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上(  )根木条.
A.1 B.2 C.3 D.4
2.(2019秋?孝义市期中)凸多边形中,四边形有2条对角线,五边形有5条对角线,十五边形对角线的条数是(  )
A.35条 B.77条 C.80条 D.90条
3.(2019?云南)一个十二边形的内角和等于(  )
A.2160° B.2080° C.1980° D.1800°
4.(2019?白银)如图,足球图片正中的黑色正五边形的内角和是(  )
A.180° B.360° C.540° D.720°
5.(2019?鞍山)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了(  )
A.24m B.32m C.40m D.48m
6.(2019?盘锦)如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于BF的长为半径画弧,两弧交于点M,作射线AM交BC于点E,连接EF.下列结论中不一定成立的是(  )
A.BE=EF B.EF∥CD C.AE平分∠BEF D.AB=AE
7.(2019?抚顺)下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
8.(2018?东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是(  )
A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF
9.(2019?铜仁市)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为(  )
A.12 B.14 C.24 D.21
10.(2017春?南开区校级期中)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有(  )
A.1个 B.2个 C.3个 D.4个
二.填空题(每小题4分,共24分)
11.(2019?云南)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于   .
12.(2019?梧州)如图,?ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=   度.
13.(2019?鸡西)如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件   ,使四边形ABCD是平行四边形.
14.(2016?邵阳)如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件   (写一个即可),使四边形ABCD是平行四边形.
15.(2019春?宿迁期中)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有   次.
16.(2018春?薛城区期中)已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设   .
三.解答题(共66分)
17.(6分)(2019秋?蕲春县期中)如图是两位小朋友在探究某多边形的内角和时的一段对话,请根据他们的对话内容判断他们是在求几边形?少加的内角为多少度?
18.(6分)(2019?吉林)如图,在?ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.
19.(6分)(2019?广安)如图,点E是?ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求?ABCD的周长.
20.(8分)(2016?张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
21.(10分)(2019?遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:
(1)△ADF≌△ECF.
(2)四边形ABCD是平行四边形.
22.(10分)(2020?锦江区模拟)在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,
AF.
(1)求证:四边形DEBF是平行四边形;
(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.
23.(10分)(2020?封开县一模)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;
(1)求证:四边形ACED是平行四边形.
(2)求BC的长.
24.(10分)(2019秋?睢宁县期中)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)AB=6,AC=4,求四边形AEDF的周长;
(2)EF与AD有怎样的位置关系?证明你的结论.

第四章 综合能力测试卷
参考答案与试题解析
一.选择题
1.(2019秋?武冈市期中)三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上(  )根木条.
A.1 B.2 C.3 D.4
【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.
【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.
故选:B.
2.(2019秋?孝义市期中)凸多边形中,四边形有2条对角线,五边形有5条对角线,十五边形对角线的条数是(  )
A.35条 B.77条 C.80条 D.90条
【分析】n边形的对角线共有条,根据此关系式求解.
【解答】解:十五边形对角线的条数是(条),
即凸十五边形的对角线有90条.
故选:D.
3.(2019?云南)一个十二边形的内角和等于(  )
A.2160° B.2080° C.1980° D.1800°
【分析】n边形的内角和是(n﹣2)?180°,把多边形的边数代入公式,就得到多边形的内角和.
【解答】解:十二边形的内角和等于:(12﹣2)?180°=1800°;
故选:D.
4.(2019?白银)如图,足球图片正中的黑色正五边形的内角和是(  )
A.180° B.360° C.540° D.720°
【分析】根据多边形内角和公式(n﹣2)×180°即可求出结果.
【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,
故选:C.
5.(2019?鞍山)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了(  )
A.24m B.32m C.40m D.48m
【分析】从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.
【解答】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,
则60n=360,解得n=6,
故他第一次回到出发点A时,共走了:8×6=48(m).
故选:D.
6.(2019?盘锦)如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于BF的长为半径画弧,两弧交于点M,作射线AM交BC于点E,连接EF.下列结论中不一定成立的是(  )
A.BE=EF B.EF∥CD C.AE平分∠BEF D.AB=AE
【分析】首先证明四边形ABEF是菱形,利用菱形的性质对各个选项进行判断即可.
【解答】解:由尺规作图可知:AF=AB,AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠BEA.
∴∠BAE=∠BEA,
∴AB=BE,
∵AF=AB,
∴AF=BE,
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AF=AB,
∴四边形ABEF是菱形,
∴AE平分∠BEF,BE=EF,EF∥AB,故选项A、C正确,
∵CD∥AB,
∴EF∥CD,故选项B正确;
故选:D.
7.(2019?抚顺)下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B.
C. D.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确;
故选:D.
8.(2018?东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是(  )
A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF
【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;
【解答】解:正确选项是D.
理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,
∴△CDE≌△BFE,CD∥AF,
∴CD=BF,
∵BF=AB,
∴CD=AB,
∴四边形ABCD是平行四边形.
故选:D.
9.(2019?铜仁市)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为(  )
A.12 B.14 C.24 D.21
【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=BC,EF=GH=AD,然后代入数据进行计算即可得解
【解答】解:∵BD⊥CD,BD=4,CD=3,
∴BC===5,
∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴EH=FG=BC,EF=GH=AD,
∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
又∵AD=7,
∴四边形EFGH的周长=7+5=12.
故选:A.
10.(2017春?南开区校级期中)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有(  )
A.1个 B.2个 C.3个 D.4个
【分析】条件⑤可以判断四边形DEBF是平行四边形.根据平行四边形的判定方法一一证明即可;
【解答】解:⑤可以判断四边形DEBF是平行四边形. 理由:∵四边形ABCD是平行四边形, ∴OD=OB,OA=OC, ∵AE=CF, ∴OE=OF, ∴四边形DEBF是平行四边形, 故选:D.
二.填空题
11.(2019?云南)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于 16或8 .
【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.
【解答】解:过D作DE⊥AB于E,
在Rt△ADE中,∵∠A=30°,AD=4,
∴DE=AD=2,AE=AD=6,
在Rt△BDE中,∵BD=4,
∴BE===2,
如图1,∴AB=8,
∴平行四边形ABCD的面积=AB?DE=8×2=16,
如图2,AB=4,
∴平行四边形ABCD的面积=AB?DE=4×2=8,
故答案为:16或8.
12.(2019?梧州)如图,?ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF= 61 度.
【分析】直接利用平行四边形的性质以及结合三角形内角和定理得出答案.
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∵∠ADC=119°,DF⊥BC,
∴∠ADF=90°,
则∠EDH=29°,
∵BE⊥DC,
∴∠DEH=90°,
∴∠DHE=∠BHF=90°﹣29°=61°.
故答案为:61.
13.(2019?鸡西)如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件 AD∥BC(答案不唯一) ,使四边形ABCD是平行四边形.
【分析】可再添加一个条件AD∥BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.
【解答】解:根据平行四边形的判定,可再添加一个条件:AD∥BC.
故答案为:AD∥BC(答案不唯一).
14.(2016?邵阳)如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件 AD∥BC (写一个即可),使四边形ABCD是平行四边形.
【分析】根据平行四边形的定义或判定定理即可解答.
【解答】解:可以添加:AD∥BC(答案不唯一).
故答案是:AD∥BC.
15.(2019春?宿迁期中)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有 3 次.
【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.
【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,
∵以点P、D、Q、B为顶点组成平行四边形,
∴DP=BQ,
分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,
此时方程t=0,此时不符合题意;
②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,
解得:t=4.8;
③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,
解得:t=8;
④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,
解得:t=9.6;
⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,
解得:t=16,
此时P点走的路程为16>AD,此时不符合题意.
∴共3次.
故答案为:3.
16.(2018春?薛城区期中)已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设 这五个数都小于 .
【分析】熟记反证法的步骤,直接从结论的反面出发得出即可.
【解答】解:知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设这五个数都小于,
故答案为:这五个数都小于
三.解答题
17.(2019秋?蕲春县期中)如图是两位小朋友在探究某多边形的内角和时的一段对话,请根据他们的对话内容判断他们是在求几边形?少加的内角为多少度?
【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.
【解答】解:1140°÷180°=6…60°,
则边数是:6+1+2=9;
他们在求九边形的内角和;
180°﹣60°=120°,
少加的那个内角为120度.
18.(2019?吉林)如图,在?ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.
【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.
【解答】证明:由题意可得:AE=FC,
在平行四边形ABCD中,AB=DC,∠A=∠C
在△ABE和△CDF中,,
所以,△ABE≌△CDF(SAS).
19.(2019?广安)如图,点E是?ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求?ABCD的周长.
【分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的周长.
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠F,∠D=∠ECF.
又ED=EC,
∴△ADE≌△FCE(AAS).
∴AD=CF=3,DE=CE=2.
∴DC=4.
∴平行四边形ABCD的周长为2(AD+DC)=14.
20.(2016?张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
【分析】利用平行线的性质得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出对应边相等AE=EF,再利用平行四边形的判定得出即可.
【解答】解:四边形ABFC是平行四边形;理由如下:
∵AB∥CD,
∴∠BAE=∠CFE,
∵E是BC的中点,
∴BE=CE,
在△ABE和△FCE中,,
∴△ABE≌△FCE(AAS);
∴AE=EF,
又∵BE=CE
∴四边形ABFC是平行四边形.
21.(2019?遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:
(1)△ADF≌△ECF.
(2)四边形ABCD是平行四边形.
【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.
【解答】证明:(1)∵AD∥BC,
∴∠DAF=∠E,
∵点F是CD的中点,
∴DF=CF,
在△ADF与△ECF中,,
∴△ADF≌△ECF(AAS);
(2)∵△ADF≌△ECF,
∴AD=EC,
∵CE=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形.
22.(2020?锦江区模拟)在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,
AF.
(1)求证:四边形DEBF是平行四边形;
(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.
【分析】(1)根据平行四边形的性质得到∠A=∠C,AD=CB,根据全等三角形的性质和平行四边形的判定定理即可得到结论;
(2)根据平行线的性质和角平分线的定义得到∠DAF=∠AFD,求得AD=DF,根据勾股定理的逆定理和勾股定理即可得到结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△DAE和△BCF中,
∴△DAE≌△BCF(SAS),
∴DE=BF,
∵AB=CD,AE=CF,
∴DF=BE,
∴四边形DEBF是平行四边形;
(2)解:
∵AB∥CD,
∴∠DFA=∠BAF,
∵AF平分∠DAB,
∴∠DAF=∠BAF,
∴∠DAF=∠AFD,
∴AD=DF,
∵四边形DEBF是平行四边形,
∴DF=BE=5,BF=DE=4,
∴AD=5,
∵AE=3,DE=4,
∴AE2+DE2=AD2,
∴∠AED=90°,
∵DE∥BF,
∴∠ABF=∠AED=90°,
∴AF===4.
23.(2020?封开县一模)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;
(1)求证:四边形ACED是平行四边形.
(2)求BC的长.
【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;
(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义得到结论.
【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,
∴AC∥DE
又∵CE∥AD
∴四边形ACED是平行四边形.
(2)∵四边形ACED是平行四边形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD===2.
∵D是BC的中点,
∴BC=2CD=4.
24.(2019秋?睢宁县期中)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)AB=6,AC=4,求四边形AEDF的周长;
(2)EF与AD有怎样的位置关系?证明你的结论.
【分析】(1)根据直角三角形的性质、中线的概念分别求出DE、AE、DF、AF,根据四边形的周长公式计算即可;
(2)根据线段垂直平分线的判定定理解答.
【解答】解:(1)∵AD是高,
∴∠ACB=∠ADC=90°,
在Rt△ADB中,E是AB的中点,
∴DE=AB=3,AE=AB=3,
同理可得,AF=DF=AC=2,
∴四边形AEDF的周长=3+3+2+2=10;
(2)EF垂直平分AD,
理由如下:∵EA=ED,FA=FD,
∴EF是AD的垂直平分线.