一元一次方程的应用(五)
——工程、重叠、分段讨论问题
●教学目标:
知识目标:1、体验方程是刻画现实世界的数学模型;
2、掌握列方程解应用题的一般步骤;
3、会利用一元一次方程解决简单的实际问题。
能力目标:掌握根据工程、重叠、分段讨论问题中的数量关系列方程。
情感目标:体验方程是刻画现实世界的一个有效的数学模式,体会列方程解应用题的一般步骤,体验利用一元一次方程解决简单的工程、重叠、分段讨论问题。
●教学重点:掌握列方程解应用题的一般步骤。
教学难点:工程、重叠、分段讨论问题的数量关系。
教学方法:师生互动、分析、观察 、探究
●教学准备:实物投影
教学过程:
复习引入:小学里我们就学过工程问题,我们把整个工程看成“1”,
工作总量=工作效率×工作时间
二、探究新知:
例1、某装潢公司接到一项业务,如果由甲组做需要10天完成,由乙组做需要15天完成。为了早日完工,现由甲、乙两组一起做,4天后甲组因另有任务,余下部分由乙组单独做,问还需几天才能完成?
例2、汽车对运送一批货物。若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完。这个车队有多少辆车?
例3、七年级二班有45个人报名参加了文学社和书画社。已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的人有20人,问参加书画社的人有多少人?
在解决实际问题时,我们总是通过分析实际问题,抽象出数学问题,然后运用数学方法(或思想)解决问题.用列表分析数量关系是常用的方法.
例4、《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款是按下表累计计算的:
全月应纳税所得额 税率
不超过500元部分 5%
超过500元至2000元部分 10%
超过2000元至5000元部分 15%
… …
若某人10月份应交所得税款10元,那么他10月份的收入是多少元?
(2)若某人10月份应交所得税款95元,那么他10月份的收入是多少元?
●小结:在解决实际问题时,我们总是通过分析实际问题,抽象出数学问题,然后运用数学方法(或思想)解决问题.用列表分析数量关系是常用的方法。(1)工程问题:工作总量=工作效率×工作时间(2)重叠问题:重叠的部分加了两次,要相应地减少1次。(3)分段讨论问题,要先讨论范围。
板书设计:
5.3一元一次方程的应用(五)工程问题、重叠问题、分段讨论问题一、工作总量=工作效率×工作时间例1 例2例3 实物投影
●作业:应用题作业(4)
●教学反思:学生对本节课的工程问题掌握得不错,但对于重叠、分段讨论问题掌握得不够理想。对于分段讨论的问题,如何计算水电费等问题,都要先讨论范围。在这一点上,学生理解较困难。在复习课上,还要加强。