(共16张PPT)
浙教版
七上数学
2.2.2有理数的减法
复习旧知
减法
加法
转 化
减去一个数,等于加上这个数的相反数。
a
-b
=
a+(-b)
有理数减法法则
探究新知
要计算,你认为怎样计算比较简便?先试一试,再与你的同伴交流.
本算式含有哪些运算?
减法运算应该怎么办?
探究新知
式子中既有加法运算,又有减法运算,因为“减去一个数,等于加上这个数的相反数”,所以可以把它们全部转化为加法运算。
=
=()+(-)
=1-=
小试牛刀
在代数里,一切加法与减法运算,都可以统一成加法运算.在一个和式里,通常有的加号可以省略,每个数的括号也可以省略.
如可以写成省略括号的形式:
(仍可看作和式)
读作
“正、负、正的和”
也可读作
“减加”
加减法统一成加法
练习
把下列各式写成省略加号的和的形式,并把它读出来:
1)(-7)+(-8)-(-9)
2)(-3)+(-8)-(-6)-(-7)
3)(-32)-(+17)-(-65)-(-24)
解:-7-8+9
负7减8加9
解:-3-8+6+7
负3减8加6加7
解:-32-17+65+24
负32减17加65加24
例题解析
例3
计算(-3)+(-8)-(-6)+(-7)
解:(-3)+(-8)-(-6)+(-7)
=(-3)+(-8)+(+6)+(-7)
=(-3)+(-8)+(-7)+6
=-18+6
=-12
总结
加减混合运算的基本步骤
⑴把混合运算中的减法转变为加法,写成前面是加号的形式;
⑵省略加号和括号;
⑶恰当运用加法交换律和结合律简化计算;
⑷在每一步的运算中都须先定符号,后计算数值.
练习
=(-24)+(+3.2)+(-16)+(-3.5)+0.3
计算:(1)(-24)+(+3.2)-(+16)-(+3.5)-(-0.3)
=[(-24)+(-16)]+[(-3.5)+0.3+3.2]
=-40+0
=-40.
例题探究
例4、一储蓄所在某时段内共受理了8项现款储蓄业务:存入637元,取出1500元,取出2000元,存入1200元,存入3000元,存入1120元,取出3000元,存入1002元.问该储蓄所在这一时段内现款增加或减少了多少元?
=(637+1200+1120+1002)+(3000-3000)+(-1500-2000)
=3959+0+(-3500)
答:该储蓄所在这一时段内现款增加了459元。
=459(元)
637-1500-2000+1200+3000+1120-3000+1002
解:记存入为正,由题意可得
练习
某公路养护小组乘车沿南北公路巡护维护。某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):
+18,-9,-7,-14,-6,+13,-6,-8,
问题:B地在A地何方?相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?
解:(+18)+(-9)+(-7)+(-14)+(-6)+(+13)+(-6)+(-8)=-19(千米)
所以,B地在A地的南方,距A地19千米处.
|+18|+|-9|+|-7|+|-14|+|-6|+|+13|+|-6|+|-8|=81(千米)
81×a=81
a
答:A地在B地的南方距B地19千米;求该天共耗油81a升.
课堂练习
1.某地一天早晨的气温是-7
℃,中午上升了11
℃,午夜又下降了9
℃,则午夜的气温是_______.
2.-7,-12,+2的和比它们的绝对值的和小( )
A.-38 B.-4
C.4
D.38
3.用算式表示“8与
比它的相反数小2的数的差”正确的是( )
A.8+[(-8)+2]
B.8-[(-8)+2]
C.8+[(-8)-2]
D.8-[(-8)-2]
-5℃
D
D
4.计算:
(1)1-4+3-0.5.
(2)-2.4+3.5-4.6+3.5.
(3)(-7)-(-5)+(-4)-(-10)
解:(1)1-4+3-0.5
=-4-0.5+1+3
=-4.5+4
=-0.5
解:(2)-2.4+3.5-4.6+3.5
=-2.4-4.6+3.5+3.5
=-7+7
=0
解:(3)(-7)-(-5)+(-4)-(-10)
=-7+5-4+10
=-11+15
=4
5.有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取一个恰当的基准数进行简化运算.
原质量
27
24
23
28
21
26
22
27
与基准数的差距
.
.
.
.
.
.
.
.
+2
-1
-2
+3
-4
+1
-3
+2
(1)你认为选取的一个恰当的基准数可以为____;
(2)根据你选取的基准数,用正、负数填写上表;
(3)这8筐水果的总质量是多少?
25
解:(3)总质量为25×8+(+2-1-2+3-4+1-3+2)=200+(-2)=198(kg).
课堂小结
有
理
数
的
加
减
混
合
运
算
有理数的加减混合运算可以统一为加法运算
使用加法结合律遵循的原则
1.互为相反数的数相结合;
2.能凑整的数相结合;
3.同分母的数相结合.
https://www.21cnjy.com/help/help_extract.php中小学教育资源及组卷应用平台
浙教版数学七年级上2.2.2有理数的减法导学案
课题
有理数的减法
单元
2
学科
数学
年级
七年级
知识目标
1.会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。
2.利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。
重点难点
重点:有理数的加减混合运算。
难点:利用有理数的加减混合运算解决一些简单实际问题。
教学过程
知识链接
提问:
有理数减法法则?
合作探究
一、教材第36页
要计算,你认为怎样计算比较简便?先试一试,再与你的同伴交流.
本算式含有哪些运算?
减法运算应该怎么办?
。
二、教材第36页
例3
计算(-3)+(-8)-(-6)+(-7)
总结:加减混合运算的基本步骤
,
。
三、教材第37页
例4、一储蓄所在某时段内共受理了8项现款储蓄业务:存入637元,取出1500元,取出2000元,存入1200元,存入3000元,存入1120元,取出3000元,存入1002元.
问该储蓄所在这一时段内现款增加或减少了多少元?
自主尝试
1.下列式子可读作“负10、负6、正3、负7的和”的是(
)
A.-10+(-6)+(+3)-(-7)
B.-10-6+3-7
C.-10-(-6)-3-(-7)
D.-10-(-6)-(-3)-(-7)
2.水利勘察队沿一条河向上游走了5.5千米,又继续向上游走了4.8千米,然后又向下游走了5.2千米,又向下游走了4.1千米,这时勘察队在出发点的________处(
)
A.上游1千米
B.下游9千米
C.上游10.3千米
D.下游1千米
3.
某粮食仓库管理员统计10袋面粉的总质量.以100千克为标准,超过的记为正,不足的记为负.通过称量的记录如下:+3,+4.5,-0.5,-2,-5,-1,+2,+1,-4,+1.
请问:
(1)第几袋面粉最接近100千克?
(2)面粉总计超过或不足多少千克?
(3)这10袋面粉总质量是多少千克?
【方法宝典】
根据有理数的加减混合运算法则进行解题即可.
当堂检测
1.把18-(+33)+(-21)-(-42)写成省略括号的和的算式是(
)
A.18+(-33)+(-21)+42
B.18-33-21+42
C.18-33-21-42
D.18+33-21-42
2.计算(-25)-(-16)+2的结果是(
)
A.7
B.-7
C.8
D.-8
3.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下________米处(
)
A.430
B.530
C.570
D.470
4.若三个不相等的有理数的和为0,则下列结论正确的是(
)
A.三个加数全是0
B.至少有两个加数是负数
C.至少有一个加数是负数
D.至少有两个加数是正数
5.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( )
A.加法交换律
B.加法结合律
C.分配律
D.加法的交换律与结合律
6.
计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .
7.
一只跳蚤在某条直线上从点O开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O的距离是 个单位.?
8.
计算:
(1)(-5)-(-10)+(-32)-(-7);
(2)-8.4+10-4.2+5.7.
9.
2016年9月2日早上8点,空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时,其中一架飞机起飞0.5千米后的高度变化如表:
高度变化记作上升2.5千米下降1.2千米上升1.1千米下降1.8千米
(1)完成上表;
(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?
(3)如果飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?
小结反思
通过本节课的学习,你们有什么收获?
参考答案:
当堂检测:
1.B
2.B
3.C
4.
C
5.D
6.
0
7.50
8.
解:(1)
原式=-5+10-32+7
=(-5-32)+(10+7)
=-37+17
=-20.
(2)
解:原式=(-8.4-4.2)+(10+5.7)
=-12.6+15.7
=3.1.
9.
解:(1)
+2.
5千米,
-1.2千米,
+1.1千米,
-1.8千米
(2)0.5+2.5-1.2+1.1-1.8=1.1(千米).
答:飞机完成上述四个表演动作后,飞机离地面的高度是1.1千米.
(3)|+2.5|×5+|-1.2|×3+|+1.1|×5+|-1.8|×3=27(升).
答:这架飞机在这4个动
作表演过程中,一共消耗了27升燃油.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
21世纪教育网(www.21cnjy.com)