浙教版九年级下册数学 2.2:切线长定理 同步练习(word含解析)

文档属性

名称 浙教版九年级下册数学 2.2:切线长定理 同步练习(word含解析)
格式 doc
文件大小 310.3KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2021-02-03 15:24:28

图片预览

文档简介

2.2切线长定理 同步练习
一.选择题
1.如图,PA、PB分别切⊙O于A、B,PA=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交PA、PB于点E、F.则△PEF的周长为(  )
A.10cm B.15cm C.20cm D.25cm
2.如图,圆O的圆心在梯形ABCD的底边AB上,并与其它三边均相切,若AB=10,AD=6,则CB长(  )
A.4 B.5 C.6 D.无法确定
3.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=(  )
A. B. C. D.
4.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为(  )
A.40° B.140° C.70° D.80°
5.如图,在?ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为(  )
A.3 B.4 C. D.
6.如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=40°,则∠PAE+∠PBE的度数为(  )
A.50° B.62° C.66° D.70°
7.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于(  )
A. B. C. D.1
8.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为(  )
A.9 B.10 C.3 D.2
9.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为(  )
A. B.3 C.3 D.
10.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确(  )
A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE
二.填空题
11.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是   cm.
12.已知:PA切⊙O于点A,PB切⊙O于点B,点C是⊙O上异于A、B的一点,过点C作⊙O的切线分别交PA和PB于点D、E,若PA=10cm,DE=7cm,则△PDE的周长为   cm.
13.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为   .
14.已知:PA、PB、EF分别切⊙O于A、B、D,若PA=15cm,那么△PEF周长是    cm.若∠P=50°,那么∠EOF=   .
15.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,
已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为   .
三.解答题
16.如图,PA、PB、CD是⊙O的切线,切点分别为点A、B、E,若△PCD的周长为18cm,∠APB=60°,求⊙O的半径.
17.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.
(1)求证:AO2=AE?AD;
(2)若AO=4cm,AD=5cm,求⊙O的面积.
18.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论;
(2)求BC的长;
(3)求⊙O的半径OF的长.
参考答案
一.选择题
1.解:∵PA、PB分别切⊙O于A、B,
∴PB=PA=10cm,
∵EA与EC为⊙的切线,
∴EA=EC,
同理得到FC=FB,
∴△PEF的周长=PE+EF+PF=PE+EC+FC+PF
=PE+EA+FB+PF
=PA+PB
=10+10
=20(cm).
故选:C.
2.解:方法1、
设圆O的半径是R,圆O与AD、DC、CB相切于点E、F、H,连接OE、OD、OF、OC、OH.
设CD=y,CB=x.
设S梯形ABCD=S
则S=(CD+AB)R=(y+10)R﹣﹣﹣﹣(1)
S=S△BOC+S△COD+S△DOA
=xR+yR+×6R﹣﹣﹣﹣(2)
联立(1)(2)得x=4;
方法2、连接OD.OC
∵AD,CD是⊙O的切线,
∴∠ADO=∠ODC,
∵CD∥AB,
∴∠ODC=∠AOD,
∴∠ADO=∠AOD
∴AD=OA
∵AD=6,
∴OA=6,
∵AB=10,
∴OB=4,
同理可得
OB=BC=4,
故选:A.
3.解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F
∵AB,AE都为圆的切线
∴AE=AB
∵OB=OE,AO=AO
∴△ABO≌△AEO(SSS)
∴∠OAB=∠OAE
∴AO⊥BE
在直角△AOB里AO2=OB2+AB2
∵OB=1,AB=3
∴AO=
易证明△BOF∽△AOB
∴BO:AO=OF:OB
∴1:=OF:1
∴OF=
sin∠CBE==
故选:D.
4.解:∵PA是圆的切线.
∴∠OAP=90°,
同理∠OBP=90°,
根据四边形内角和定理可得:
∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,
∴∠ACB=∠AOB=70°.
故选:C.
5.解:连接CE;
∵,
∴∠BAE=∠EBC+∠BEC;
∵∠DCB=∠DCE+∠BCE,
由弦切角定理知:∠DCE=∠EBC,
由平行四边形的性质知:∠DCB=∠BAE,
∴∠BEC=∠BCE,即BC=BE=5,
∴AD=5;
由切割线定理知:DE=DC2÷DA=,
故选:D.
6.解:∵PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,
∴CE=CA,DE=DB,
∴∠CAE=∠CEA,∠DEB=∠DBE,
∴∠PCD=∠CAE+∠CEA=2∠CAE,∠PDC=∠DEB+∠DBE=2∠DBE,
∴∠CAE=∠PCD,∠DBE=∠PDC,
即∠PAE=∠PCD,∠PBE=∠PDC,
∵∠P=40°,
∴∠PAE+∠PBE=∠PCD+∠PDC=(∠PCD+∠PDC)=(180°﹣∠P)=70°.
故选:D.
7.解:连OM,ON,如图
∵MD,MF与⊙O相切,
∴∠1=∠2,
同理得∠3=∠4,
而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC
∴∠2+∠3+∠B=180°;
而∠1+∠MOB+∠B=180°,
∴∠3=∠MOB,即有∠4=∠MOB,
∴△OMB∽△NOC,
∴=,
∴BM?CN=BC2,
∴=.
故选:B.
8.解:作DH⊥BC于H,如图,
∵四边形ABCD中,AD平行BC,∠ABC=90°,
∴AB⊥AD,AB⊥BC,
∵AB为直径,
∴AD和BC为⊙O 切线,
∵CD和MN为⊙O 切线,
∴DE=DA=2,CE=CB,NE=NF,MB=MF,
∵四边形ABHD为矩形,
∴BH=AD=2,DH=AB=6,
设BC=x,则CH=x﹣2,CD=x+2,
在Rt△DCH中,∵CH2+DH2=DC2,
∴(x﹣2)2+62=(x+2)2,解得x=,
∴CB=CE=,
∴△MCN的周长=CN+CM+MN
=CN+CM+NF+MF
=CN+CM+NF+MB
=CE+CB
=9.
故选:A.
9.解:连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2﹣OQ2,
∵当PO⊥AB时,线段PQ最短;
又∵A(﹣6,0)、B(0,6),
∴OA=OB=6,
∴AB=6
∴OP=AB=3,
∵OQ=2,
∴PQ==,
故选:D.
10.解:∵∠1=60°,∠2=65°,
∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,
∴∠2>∠1>∠ABC,
∴AB>BC>AC,
∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,
∴AC=CD,BC=CE,
∴AB>CE>CD.
故选:A.
二.填空题
11.解:∵∠CAD=60°,
∴∠CAB=120°,
∵AB和AC与⊙O相切,
∴∠OAB=∠OAC,
∴∠OAB=∠CAB=60°
∵AB=3cm,
∴OA=6cm,
∴由勾股定理得OB=3cm,
∴光盘的直径6cm.
故答案为:6.
12.解:分两种情况:
①点C在劣弧AB上时,如图,
当根据切线长定理得:AD=CD,BE=CE,PA=PB,
则△PDE的周长=PD+DE+PE=PD+CD+CE+PE=PD+AD+PE+BE=PA+PB=2PA=20cm.
②点C在优弧AB上时,如图,
当根据切线长定理得:AD=CD,BE=CE,PA=PB,
则△PDE的周长=PD+DE+PE=2PA+2DE=20+2×7=34cm.
综上,△PDE的周长为 20或34cm.
故答案为:20或34.
13.解:延长CD交⊙O于点G,
设BE,DG的中点分别为点M,N,则易知AM=DN,
∵BC=CD=10,由割线定理得,CB?CF=CD?CG,
∵CB=CD,
∴BF=DG,
∴BE﹣BF=BE﹣DG=2(BM﹣DN)=2(BM﹣AM)=2AB=4.
故答案为:4.
14.解:∵PA、PB、EF分别切⊙O于A、B、D,
∴PA=PB=15cm,ED=EA,FD=DB,
∴PE+EF+PF=PE+ED+PF+FD=PA+PB=30(cm)即△PEF周长是30cm;
∵PA、PB为⊙O的切线,
∴∠PAO=∠PBO=90°,
而∠P=50°,
∴∠AOB=360°﹣90°﹣90°﹣50°=130°;
连OD,如图,
∴∠ODE=∠ODF=90°,
易证得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,
∴∠1=∠2,∠3=∠4,
∴∠2+∠3=∠AOB=65°,则∠EOF=65°.
15.解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,
∴设E、F分别是⊙O的切点,
故DM=MF,FN=EN,AD=AE,
∴AM+AN+MN=AD+AE=10+10=20(cm).
故答案是:20cm.
三.解答题
16.解:连接OA,OP,则OA⊥PA,
根据题意可得:CA=CE,DE=DB,PA=PB,
∵PC+CE=DE+PD=18,
∴PC+CA+DB+PD=18,
∴PA=×18=9(cm),
∵PA、PB是⊙O的切线,
∴∠APO=∠APB=30°,
在Rt△AOP中,PO=2AO,AO>0,
故OA2+92=(2AO)2,
解得:OA=3,
故⊙O的半径为:3cm.
17.(1)证明:根据切线长定理可知:
∵∠OAE+∠ODA=(∠BAD+∠ADC)=90°,
∴∠AOD=90°,
∵∠OAE=∠OAE,∠AOD=∠AEO=90°,
∴△AOE∽△ADO,
∴=,
即AO2=AE?AD;
(2)解:在Rt△AOD中,
OD==3(cm),
∵S△AOD=×AD×EO=×AO×OD
即5×EO=4×3,
∴EO=(cm),
∵OE是⊙O的半径,
∴S圆O=πr2=π(cm2).
18.(1)答:△OBC是直角三角形.
证明:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴∠OBE=∠OBF=∠EBF,∠OCG=∠OCF=∠GCF,
∵AB∥CD,
∴∠EBF+∠GCF=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°,
∴△OBC是直角三角形;
(2)解:∵在Rt△BOC中,BO=6,CO=8,
∴BC==10;
(3)解:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴OF⊥BC,
∴OF===4.8.