(共19张PPT)
(二)
蟹浦中学 袁月
1、若c为直角△ABC的斜边,b、a为直角
边,则a、b、c的关系为___________
2、在Rt△ABC中,∠C=Rt∠,CD⊥AB,
若BC=15,AC=20,则AB=_____,
AD=__,BD=__,CD=__。
a2+b2=c2
16
25
9
12
A
B
C
D
小明想要检测雕塑底座正面的 AD 边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.
你能帮助小明解决这个问题吗
做一做:
一、画一个三角形,使其三边长(a<b<c)分别为:
(1)5cm, 12cm, 13cm;(2)7cm, 24cm, 25cm;
(3)8cm, 15cm, 17cm;(4)3cm, 4cm, 5cm。
三、这三组数都满足
吗?
二、再用量角器量一量最大的角,判断它们是否是直角三角形?
由此你得到怎样的结论
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
即如果三角形的三边长a,b,c有关系
那么这个三角形是直角三角形.
1.想一想:上述哪条边所对的角是直角
2.能够成为直角三角形三边长的三个正整数,称为勾股数(或勾股弦数)。 如3、4、5; 6、8、10; 5、12、13。
A
B
C
D
小明想要检测雕塑底座正面的 AD 边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.
小明量得AD长是30厘米,AB长是40厘米, BD长是50厘米,AD边垂直于AB边吗 为什么?
例1 根据下列条件,分别判断以a,b,c为边的三角形是不是直角三角形
(1)a=7,b=24,c=25
(2)a= b=1,c=
解:(1)∵72+242=252,
∴以7,24,25为边三角形是直角三角形
1、根据下列条件,判断下面以a、b、
c 为边的三角形是不是直角三角形
(1) a=20,b=21,c=2
(2) a=5,b=7,c=8
(3)
例2、已知△ABC三条边长分别为a,b,c,且a=m2-n2,b=2mn,c=m2+n2(m>n,m,n是正整数)。△ABC是直角三角形吗?请说明理由.
解:∵ a=m2-n2,b=2mn,c=m2+n2
∴a2+b2=(m2-n2)2+(2mn)2
=m4-2m2n2+n4+4m2n2
=(m2+n2)2
=m4+2m2n2+n4
=c2
∴△ABC是直角三角形
2、如图在△ABC中AB=4,BC=2,BD=1,CD=
判断下列结论是否正确,并说明理由
(1) CD ⊥AB; (2) AC⊥BC
D
A
C
B
解(1)∵BC2=BD2 +CD2=4
(2)∵AC2=AD2+CD2=12
∴∠CDB=90°
∴CD⊥AB
AC2+BC2=16=AB2
∴∠ACB=90°
∴AC⊥BC
3、如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD的面积
┐
D
B
A
C
1、 有一块田地的形状和尺寸如图所示,试求它的面积。
∟
∟
A
B
C
D
5
2、 有一块田地的形状和尺寸如图所示,∠B=∠D=90°, ∠A=60°,AB=5米,AD=4米,试求它的面积。
∟
A
B
C
D
5
∟
4
3、已知△ABC的三条边长分别为a、b、c,且满足关系:
2b(c+2b)+(2c+a)(2c-a)=3(b+c)2-4bc ,
试判断△ABC的形状,并说明理由.
4、已知△ABC的三条边长分别为a、b、c,且满足关系:
(a+b)2 + c2 = 3ab + c(a+b),
试判断△ABC的形状,并说明理由.
归纳小结
勾股定理
直角三角形两直角边的平方和等于斜边的平方.
a
c
b
A
B
C
(1)
如果三角形两边的平方和等于第三边平方,
那么这个三角形是直角三角形.
直角三角形的判定方法之一: