2020-2021学年浙江八年级数学下第五章《特殊平行四边形》常考题
学校:___________姓名:___________班级:___________考号:___________
单项选择题(本大题共10小题,每小题3分,共30分)
1.下列说法正确的是(
)
A.矩形的对角线互相垂直
B.菱形的对角线相等
C.正方形的对角线互相垂直且相等
D.平行四边形的对角线相等
【答案】C
【分析】
根据矩形、菱形、正方形、平行四边形的性质进行判断.
【详解】
A选项:矩形的对角线不一定互相垂直,故不符合题意;
B选项:菱形的对角线垂直不一定相等,故不符合题意;
C选项:正方形的对角线互相垂直且相等,故符合题意;
D选项:平行四边形的对角线相等不一定相等,故不符合题意;
故选:C.
【点睛】
考查了矩形、菱形、正方形、平行四边形的性质.解题关键是熟记平行四边形及特殊的平行四边形的性质.
2.菱形的边长是,一条对角线的长为,则另一条对角线的长为(
)
A.
B.
C.
D.
【答案】C
【分析】
根据菱形性质得出OB=OD=3cm,OA=OC,AC⊥BD,由勾股定理求出OA,即可得出答案.
【详解】
如图所示:
∵四边形ABCD是菱形,
∴AB=5cm,OB=OD=BD=3cm,AC⊥BD,
∴∠AOB=90°,
由勾股定理得:OA==4cm,
∴AC=2OA=8cm,
故选:C.
【点睛】
本题考查了菱形的性质和勾股定理,熟练掌握菱形的对角线互相垂直平分是解题的关键.
3.如图,以正方形的边为边向正方形外作等边,与交于点F,则的度数是(
)
A.105°
B.120°
C.135°
D.150°
【答案】B
【分析】
由正方形和等边三角形的性质得∠BCD
=90°,∠DCE=60°,CD=CE=
CB,易得△BCE是等腰三角形,求出∠CBE=15°,利用三角形外角的性质求出∠AFB的度数即可.
【详解】
解:∵四边形ABCD是正方形,等边△CDE,
∴∠BCD
=90°,∠ACB=45°,∠DCE=60°,CD=CE=
CB,
∴∠CBE=∠CEB.
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°.
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选:B.
【点睛】
本题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
4.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即)的面积为( )
A.6
B.7.5
C.10
D.20
【答案】C
【分析】
由折叠结合矩形的性质先证明设
则
再利用勾股定理求解
从而可得的面积.
【详解】
解:
长方形ABCD,
由对折可得:
设
则
由
故选:
【点睛】
本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.
5.如图,已知点E、F、G.H分别是菱形ABCD各边的中点,则四边形EFGH是( )
A.正方形
B.矩形
C.菱形
D.平行四边形
【答案】B
【分析】
根据有一个角是直角的平行四边形是矩形即可证明;
【详解】
解:连接AC、BD.AC交FG于L.
∵四边形ABCD是菱形,
∴AC⊥BD,
∵DH=HA,DG=GC,
∴GH∥AC,
同法可得:,EF∥AC,
∴GH=EF,GH∥EF,
∴四边形EFGH是平行四边形,
同法可证:GF∥BD,
∴∠OLF=∠AOB=90°,
∵AC∥GH,
∴∠HGL=∠OLF=90°,
∴四边形EFGH是矩形.
故选B.
点睛:题考查菱形的性质、平行四边形的判定、矩形的判定等、三角形的中位线定理知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
6.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(???
)
A.
B.
C.
D.3
【答案】B
【解析】
【分析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.
【详解】由图形折叠可得BE=EG,DF=FG,
∵正方形ABCD的边长为3,BE=1,
∴EG=1,EC=3-1=2,CF=3-FG,
在直角三角形ECF中,
∵EF2=EC2+CF2,
∴(1+GF)2=22+(3-GF)2,
解得GF=,
∴EF=1+=.
故正确选项为B.
【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.
7.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1)
B.(-1,)
C.(,1)
D.(-,-1)
【答案】A
【解析】
试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为
(-,1)故选A.
考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.
8.
如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1
B.2
C.3
D.4
【答案】C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选C.
考点:菱形的性质;轴对称-最短路线问题
9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1
B.
C.
D.
【答案】C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
10.如图,在△ABC
中,AB=3,AC=4,BC=5,P
为边
BC
上一动点,PE⊥AB
于
E,PF⊥AC于
F,M
为
EF
中点,则
AM
的最小值为(
)
A.1
B.1.3
C.1.2
D.1.5
【答案】C
【分析】
首先证明四边形AEPF为矩形,可得AM=AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.
【详解】
在△ABC中,因为AB2+AC2=BC2,
所以△ABC为直角三角形,∠A=90°,
又因为PE⊥AB,PF⊥AC,
故四边形AEPF为矩形,
因为M?为?EF?中点,
所以M?也是?AP中点,即AM=AP,
故当AP⊥BC时,AP有最小值,此时AM最小,
由,可得AP=,
AM=AP=
故本题正确答案为C.
【点睛】
本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.
二、填空题(本大题共7小题,每小题3分,共21分)
11.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.
【答案】3
【解析】
【分析】
由菱形的性质可得AB=BC,且∠B=60°,可得AC=AB=3,由正方形的性质可得AC=EF=3.
【详解】
解:∵四边形ABCD是菱形
∴AB=BC,且∠B=60°,
∴△ABC是等边三角形,
∴AB=AC=3,
∵四边形ACEF是正方形,
∴AC=EF=3
故答案为:3
【点睛】
本题考查了正方形的性质,菱形的性质,等边三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.
12.如图,矩形ABCD中,E在AD上,且,,,矩形的周长为16,则AE的长是______
.
【答案】3
【分析】
设,根据矩形的性质得出,,,求出,证,推出,求出,得出方程,求出即可.
【详解】
设,
四边形是矩形,
,,,
,
,
,,
,
在和中,
,
,
,
,
,
矩形的周长为,
,
,
即.
故答案为:.
【点睛】
本题考查了三角形内角和定理,矩形性质,全等三角形的性质和判定的应用,关键是推出.
13.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.
【答案】3
【分析】
根据直角三角形斜边的中线等于斜边的一半求解即可.
【详解】
∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,
∴,,
∴DO=AO=3.
故答案为3.
【点睛】
本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.
【答案】
【详解】
解:设AC与BD相交于点O,连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴,AC=BD,∠ADC=90°.
∴OA=OD.
∵AB=3,AD=4,∴由勾股定理得:AC=
.
∵
,∴DM=.
∵,
∴
.
∴PE+PF=DM=.故选B.
15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为____
【答案】3或.
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=_____.
【答案】a+c
【分析】
运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答,具体:
求证△ABC≌△CDE,得DE=BC,△ABC中AB2+CE2=AC2,根据S3=AB2,S4=DE2可求得S3+S4=c,同理可得S1+S2=a,故S3+S4+S1+S2=a+c..
【详解】
解:
∵∠ACB+∠DCE=90°,∠BAC+∠ACB=90°,
∴∠DCE=∠BAC,
∵AC=CE,∠ABC=∠CDE
∴△ABC≌△CDE,
∴BC=DE,
在直角△ABC中,AB2+BC2=AC2,
即,AB2+DE2=AC2,
∵S3=AB2,S4=DE2
∴S3+S4=c
同理S1+S2=a
故可得S1+S2+S3+S4=a+c,
故答案是:
a+c.
【点睛】
本题考查正方形面积的计算,正方形各边相等的性质,全等三角形的判定.解题关键是本题中根据△ABC≌△CDE证明S3+S4=c
17.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.
【答案】
【解析】
过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.
解:过点F作FG⊥AD,垂足为G,连接AA′.
在Rt△EFG中,EG=,
∵轴对称的性质可知AA′⊥EF,
∴∠EAH+∠AEH=90?.
∵FG⊥AD,
∴∠GEF+∠EFG=90?.
∴∠DAA′=∠GFE.
在△GEF和△DA′A中,
,
∴△GEF≌△DA′A.
∴DA′=EG=5.
设AE=x,由翻折的性质可知EA′=x,则DE=12?x.
在Rt△EDA′中,由勾股定理得:A′E2=DE2+A′D2,即x2=(12?x)2+52.
解得:x=.
故答案为:.
点睛:本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.
三、解答题(本大题共6小题,共49分)
18.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
【答案】(1)证明见解析,(2)证明见解析
【解析】
【分析】
(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.
(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.
【详解】
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.
又∵E、F分别是边AB、CD的中点,∴BE=DF.
∵在△BEC和△DFA中,,
∴△BEC≌△DFA(SAS).
(2)由(1)△BEC≌△DFA,
∴CE=AF,
∵E、F分别是边AB、CD的中点,
∴AE=CF
∴四边形AECF是平行四边形.
【点睛】
本题考查三角形全等的证明,矩形的性质和平行四边形的判定.
19.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
【答案】(1)详见解析;(2)1
【解析】
【分析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;
(2)作OF⊥BC于F.求出EC、OF即可解决问题;
【详解】
(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,
∵∠ABC=∠ADC,
∴∠BAD=∠BCD,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵OA=OB,
∴AC=BD,
∴四边形ABCD是矩形.
(2)解:作OF⊥BC于F,如图所示.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=?EC?OF=1.
【点睛】
本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.
20.如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
【答案】(1)证明见解析;(2)2.
【解析】
分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.
(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.
详解:(1)证明:∵∥,
∴
∵平分
∴,
∴
∴
又∵
∴
又∵∥,
∴四边形是平行四边形
又∵
∴是菱形
(2)解:∵四边形是菱形,对角线、交于点.
∴.,,
∴.
在中,.
∴.
∵,
∴.
在中,.为中点.
∴.
点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
21.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
【答案】(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【分析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=AF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
22.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
【答案】(1)证明见解析;(2)证明见解析.
【分析】
(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×
=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
【详解】
(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180×
=45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
23.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.
【答案】(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.
【分析】
(1)Rt△AOH中利用勾股定理即可求得菱形的边长;
(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
(3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
【详解】
(1)Rt△AOH中,
,
所以菱形边长为5;
故答案为5;
(2)∵四边形ABCO是菱形,
∴OC=OA=AB=5,即C(5,0).
设直线AC的解析式y=kx+b,函数图象过点A、C,得
,解得,
直线AC的解析式;
(3)设M到直线BC的距离为h,
当x=0时,y=,即M(0,),,
由S△ABC=S△AMB+SBMC=AB?OH=AB?HM+BC?h,
×5×4=×5×+×5h,解得h=,
①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,
S=BP?HM=×(5﹣2t)=﹣t+;
②当2.5<t≤5时,BP=2t﹣5,h=,
S=BP?h=×(2t﹣5)=t﹣,
把S=3代入①中的函数解析式得,3=﹣t+,
解得:t=,
把S=3代入②的解析式得,3=t﹣,
解得:t=.
∴t=或.
【点睛】
本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
试卷第1页,总3页
试卷第1页,总3页2020-2021学年浙江八年级数学下第五章《特殊平行四边形》常考题
学校:___________姓名:___________班级:___________考号:___________
单项选择题(本大题共10小题,每小题3分,共30分)
1.下列说法正确的是(
)
A.矩形的对角线互相垂直
B.菱形的对角线相等
C.正方形的对角线互相垂直且相等
D.平行四边形的对角线相等
2.菱形的边长是,一条对角线的长为,则另一条对角线的长为(
)
A.
B.
C.
D.
3.如图,以正方形的边为边向正方形外作等边,与交于点F,则的度数是(
)
A.105°
B.120°
C.135°
D.150°
4.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即)的面积为( )
A.6
B.7.5
C.10
D.20
5.如图,已知点E、F、G.H分别是菱形ABCD各边的中点,则四边形EFGH是( )
A.正方形
B.矩形
C.菱形
D.平行四边形
6.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(???
)
A.
B.
C.
D.3
7.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1)
B.(-1,)
C.(,1)
D.(-,-1)
8.
如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1
B.2
C.3
D.4
9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1
B.
C.
D.
10.如图,在△ABC
中,AB=3,AC=4,BC=5,P
为边
BC
上一动点,PE⊥AB
于
E,PF⊥AC于
F,M
为
EF
中点,则
AM
的最小值为(
)
A.1
B.1.3
C.1.2
D.1.5
二、填空题(本大题共7小题,每小题3分,共21分)
11.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.
12.如图,矩形ABCD中,E在AD上,且,,,矩形的周长为16,则AE的长是______
.
13.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.
15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为____
16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=_____.
17.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.
三、解答题(本大题共6小题,共49分)
18.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
19.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
20.如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
21.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
22.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
23.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.
试卷第1页,总3页
试卷第1页,总3页