7.1 常量和变量
〖教学目标〗
◆1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
◆2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
◆3、会在简单的过程中辨别常量和变量。
〖教学重点与难点〗
◆教学重点:常量和变量的概念。
◆教学难点:本节范例由于学生对宇航中的一些量不熟悉,而且涉及一定的物理知识,是本节教学的难点。
〖教学过程〗
引言:
一辆长途客车从杭州驶向上海,全程哪些量不变?哪些量在变?
当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。
合作交流,探求新知:
1、请讨论下面的问题:
(1)圆的周长公式为,请取的一些不同的值,算出相应的的值:
cm cm
cm cm
cm cm
cm cm
……
在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?
(2)假设钟点工的工资标准为6元/时,设工作时数为t,应得工资额为m,则
=6
取一些不同的的值,求出相应的的值:
cm
cm
cm
cm
……
在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?
设问:一个量变化,具体地说是它的什么在变?什么不变呢?
引导学生观察发现:是量的数值变与不变。
2、变量与常量的概念形成:
在一个过程中,固定不变的量称为常量,如上面两题中,圆周率和钟点工的工资标准6元/时。可以取不同数值的量称为变量,如上面两题中,半径和圆面积s,工作时数t和工资额都是变量。又如购买同一种商品时,商品的单价就是常量,购买商品数量和相应的总价就是变量;某段河道一天中各时刻变化着的水位也是变量。
注意:常量与变量必须存在与一个变化过程中。判断一个量是常量还是变量,需这两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况。
3、巩固概念:
(1)向平静的湖面投一石子,便会形成以落水点为圆心的一系列同心圆,①在这个变化过程中有哪些是变量?②若面积用,半径用表示,则和的关系是什么?是常量还是变量?③若周长用C,半径用表示,则C和的关系是什么?
(2)在行程问题中,当汽车在匀速行驶的过程中,速度、行驶的时间和路程哪些是常量,哪些是变量?若一辆汽车从甲地向乙地行驶,所需的时间、行驶速度和路程哪些是常量,哪些又是变量?
常量与变量不是绝对的,而是对于一个变化过程而言的。
例题讲解:
出示例题(见书本第151页)
分析:在这6分时间内,火星车运动的时间是变量;火星车在空气阻力的作用下,速度不断减小,速度是变量。火星车与火星越来越接近,火星车所受火星的引力越来越大,也是变量。火星着陆前6分时的位置和着陆点都是空间中确定的两个位置,两者之间的距离是一个确定的量,所以是一个常量。
最后完成例题中的“想一想” (先请学生单独考虑,再作讲解)
练习巩固:
课内练习1、2、
小结回顾,反思提高
常量和变量的概念。
常量与变量必须存在与一个变化过程中。
常量与变量不是绝对的,而是对于一个变化过程而言的。
作业:作业本
7.2 认识函数(1)
〖教学目标〗
◆1、通过实例,了解函数的概念.
◆2、了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法..
◆3、理解函数值的概念.
◆4、会在简单情况下,根据函数的表示式求函数的值.
〖教学重点与难点〗
◆教学重点:函数的概念、表示法等,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点.
◆教学难点:用图象来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程,是本节教学的难点.
〖教学过程〗
教学过程分以下6个环节:
创设情境、探究新知、应用新知、课堂练习 、知识整理、布置作业
创设情境
问题1 小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬按16元/时计算.设小明的哥哥这个月工作的时间为时,应得报酬为元,填写下表:
工作时间(时) 1 5 10 15 20 … …
报酬(元)
然后回答下列问题:
(1)在上述问题中,哪些是常量?哪些是变量?(常量16,变量、)
(2)能用的代数式来表示的值吗?(能,=16)
教师指出:在这个变化过程中,有两个变量,,对的每一个确定的值,都有唯一确定的值与它对应.
问题2 跳远运动员按一定的起跳姿势,其跳远的距离(米)与助跑的速度(米/秒)有关.根据经验,跳远的距离(0<<10.5) .
然后回答下列问题:
(1)在上述问题中,哪些是常量?哪些是变量?(常量0.085,变量、)
(2)计算当分别为7.5,8,8.5时,相应的跳远距离是多少(结果保留3个有效数字)
(3)给定一个的值,你能求出相应的的值吗
教师指出:在这个变化过程中,有两个变量,,对的每一个确定的值,都有唯一确定的值与它对应.
本环节设计的意图:通过对两个学生熟悉的问题的讨论,既巩固了上一节课中常量、变量的概念,又为本节课学习函数的概念作好准备.
探究新知
(1)函数的概念
在第一个环节的基础上,教师归纳得出函数的概念:
一般地,如果对于的每一个确定的值,都有唯一确定的值,那么就说是的函数,叫做自变量.
例如,上面的问题1中,是的函数,是自变量;问题2中,是对的的函数,是自变量.
教师指出:①函数概念的教学中,要着重引导学生分析问题中一对变量之间的依存关系
——当其中一个变量确定一个值,另一个变量也相应有一个确定的值.
②函数的本质是一种对应关系——映射,由于用映射来定义函数,对初中生来说是难以接受的,所以课本对函数概念采取了比较直观的描述.这种直观的描述也和传统教材有所区别:描述中改变了过去那种“y都有唯一确定的值和它对应”的说法,即避开“对应”的意义.
③实际问题中的自变量往往受到条件的约束,它必须满足①代数式有意义;②符合实际.
如问题1中自变量表示一个月工作的时间,因此t不能取负数,也不能大于744;如问题2中自变量表示助跑的速度,它的取值范围为0<<10.5.
(2)函数的表示法
①解析法:问题1、2中,=16和这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式.用函数解析式表示函数的方法也叫解析法.
②列表法:有时把自变量的一系列值和函数的对应值列成一个表.这种表示函数关系的方法是列表法.如表(图7-2)表示的是一年内某城市月份与平均气温的函数关系.
月份 1 2 3 4 5 6 7 8 9 10 11 12
平均气温(℃) 3.8 5.1 9.3 15.4 20.2 24.3 28.6 28.0 23.3 17.1 12.2 6.3
③图象法: 我们还可以用法来表示函数,例如图7-1中的图象就表示骑车时热量消耗(焦)与身体质量(千克)之间的函数关系.解析法、图象法和列表法是函数的三种常用的表示方法.
教师指出:(1)解析法、列表法、图象法是表示函数的三种方法,都很重要,不能有所偏颇.尤其是列表法、图象法在今后代数、统计领域的学习中经常用到,教学中应引起学生的重视.
(2)对于列表法,图象法,如何表示两个变量之间的函数关系,学生可能不太容易理解,教学中可以用课本表7-2和图7-1来具体说明它们表示两个变量之间的函数关系的方法.
(3)函数值概念
与自变量对应的值叫做函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化.
若函数用解析法表示,只需把自变量的值代人函数式,就能得到相应的函数值.
例如对于函数=16,当=5时,把它代人函数解析式,得=16×5=80(元).
=80叫做当自变量=5时的函数值.
由于函数值的概念是由函数的概念派生出来,用列表法、图象法表示函数时同样存在函数值的概念,教学中也可以增加一些具体例子,来加深学生的印象.
若函数用列表法表示.我们可以通过查表得到.例如一年内某城市月份与平均气温的函数关系中,当=2时,函数值=5.1;当=10时,函数值=17.1.
若函数用图象法表示.例如骑车时热量消耗(焦)与身体质量(千克)之间的函数关系中,对给定的自变量的值,怎样求它的函数值呢?如x=50,我们只要作一直线垂直于x轴,且垂足为点(50,0),这条直线与图象的交点P(50,399)的纵坐标就是就是当函数值x=50时的函数值,即W=399(焦).
教师指出:当函数用解析法表示时,函数值的概念与学生已经学过的代数式的值的概念几乎没有什么区别,所以课本没有对函数值的概念作重新定义,教学中可以增加一些求函数值的练习,使学生感悟函数值与代数式的值两个概念之间的关系.
应用新知
例1 等腰△ABC的周长为20,底边BC长为,腰AB长为,求:
(1)关于的函数解析式;
(2)当腰长AB=7时,底边的长;
(3)当=11和=4时,函数值是多少?
答案:(1)=20-2;(2)腰长AB=7,即=7时,=6,所以底边长为6;(3)当=11和=4时,函数值不再有意义.
说明(1)第1问中的函数解析式不能写成的形式,一定要把写成的代数式
(2)实际问题中,自变量的取值范围往往受到条件的限制,本题的自变量的取值范围是5<<10,具体的求法本节课不作介绍,放到下一节课中去完成,当=11和=4时,尽管可求出它对应的值,但自变量的值都不在相应的取值范围内,因此当=11和=4时,函数值不再有意义.
例2 某城市自来水收费实行阶梯水价,收费标准如下表所示:
月用水量x(度) 0
18
收费标准y (元/度) 2.00 2.50 3.00
(1)y是x的函数吗?为什么?
(2)分别求当x=10,16,20时的函数值,并说明它的实际意义.
答案:(1)是,根据函数的概念,对于x的每一个确定的值,y都有唯一确定的值;
(2)当x=10时,y=2×10=20(元).月用水量10度需交水费20(元);
当x=16时,y=2×12+4×2.50=34(元).月用水量16度需交水费34(元);
当x=20时,y=2×12+6×2.50+2×3=45(元).月用水量45度需交水费45(元).
说明 本例安排的目的两个:①是让学生进一步巩固函数的概念;②让学生体会当函数用列表法给出时函数值的求法.本例教学时教师应向学生解释“收费实行阶梯水价”的含义,
即月用水量不超过12度时每度2元,超过12度不超过18度时每度2.5元,超过18度时每度3元,如月用水量为38度时,应交水费y =2×12+6×2.5+3×20=99(元).
例3 下图是小明放学回家的折线图,其中t表示时间,s表示离开学校的路程. 请根据图象回答下面的问题:
(1)这个折线图反映了哪两个变量之间的关系?路程s可以看成t的函数吗?
(2)求当t=5分时的函数值?
(3)当 10≤t≤15时,对应的函数值是多少?并说明它的实际意义?
(4)学校离家有多远?小明放学骑自行车回家共用了几分钟?
答案:(1)折线图反映了s、t两个变量之间的关系,路程s可以看成t的函数;
(2)当t=5分时函数值为1km;
(3)当 10≤t≤15时,对应的函数值是始终为2,它的实际意义是小明回家途中停留了5分钟;
(4)学校离家有3.5km,放学骑自行车回家共用了20分钟.
说明 安排本例的主要目的是让学生体会当函数用图象法给出时函数值的求法.通过本例的教学,使学生体会函数图象是如何反映自变量与函数之间的关系的,进一步加深学生对函数概念的理解,体验数形结合的数学思想,为后面的一次函数的应用作好准备.
4.课堂练习
课本P155课内练习1,2
补充 下图是表示某一个月的日平均温度变化的曲线,根据图象回答问题:
①这个曲线反映了哪两个变量之间的关系?日平均温度T是x的函数吗?
②求当x=5,13,16,25时的函数值?
③这个月中最高与最低的日平均温度各是多少
5.知识整理
师生可共同梳理知识点:
6.布置作业
课本作业题1,2,3,4,5 .
7.2 认识函数(2)
〖教学目标〗
◆知识技能目标
1.会根据实际问题构建数学模型并列出函数解析式;
2.掌握根据函数自变量的值求对应的函数值,或是根据函数值求对应自变量的值;
3.会在简单的情况下根据实际背景对自变量的限制求出自变量的取值范围.
◆过程性目标
1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;
2.联系求代数式的值的知识,探索求函数值的方法.
〖教学重点与难点〗
◆教学重点:求函数解析式是重点.
◆教学难点:根据实际问题求自变量的取值范围并化归为解不等式(组)学生不易理解.
〖教学过程〗
一、创设情境
问题1 填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么 如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,你能写出y与x的函数关系式吗
解 如图能发现涂黑的格子成一条直线.
函数关系式为: y=10-x.
问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.
解 y与x的函数关系式:y=180-2x.
问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积ycm2与MA长度x cm之间的函数关系式.
解 y与x的函数关系式:.
二、探究归纳
思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.
(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?
分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.
问题2,因为三角形内角和是180°所以等腰三角形的底角的度数x不可能大于或等于90°.
问题3,开始时A点与M点重合,MA长度为0cm,随着△ABC不断向右运动过程中,MA长度逐渐增长,最后A点与N点重合时,MA长度达到10cm.
解 (1)问题1,自变量x的取值范围是:1≤x≤9;
问题2,自变量x的取值范围是:0<x<90;
问题3,自变量x的取值范围是:0≤x≤10.
(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4.
上面例子中的函数,都是利用解析法表示的,又例如:
s=60t, S=πR2.
在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,必须使实际问题有意义.例如,函数解析式S=πR2中自变量R的取值范围是全体实数,但如果式子表示圆面积S与圆半径R的关系,那么自变量R的取值范围就应该是R>0.
三、实践应用
例1 求下列函数中自变量x的取值范围:(1) y=3x-1; (2) y=2x2+7;(3);(4).
分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x取任意实数,3x-1与2x2+7都有意义;而在(3)中,x=-2时,没有意义;在(4)中,x<2时,没有意义.
解 (1)x取值范围是任意实数;
(2)x取值范围是任意实数;
(3)x的取值范围是x≠-2;
(4)x的取值范围是x≥2.
归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式.
例2 等腰三角形ABC的周长为10,底边长为y,腰AB长为x.求:
y关于x的函数解析式;
自变量x的取值范围;
腰长AB=3时,底边的长.
分析 (1)问题中的x与y之间存在怎样的数量关系 这种数量关系可以什么形式给出 (2x+y=10)
(2)这个等式算不算函数解析式 如果不算,应该对等式进行怎样的变形
(3)结合实际,x与y应满足怎样的不等关系
归纳 (1)在求函数解析式时,可以先得到函数与自变量之间的等式,然后解出函数关于自变量的函数解析式;
(2)在求自变量的取值范围时,要从两个方面来考虑:
①代数式要有意义;②要符合实际.
例3 如图,正方形EFGH内接于边长为1的正方形ABCD.设AE=x,试求正方形EFGH的面积y与x的关系,写出自变量x的取值范围,并求当x=时,正方形EFGH的面积.
解:正方形EFGH的面积=大正方形的面积-4一个小三角形的面积,
则 y与x之间的函数关系式为
(0(0当x=时,
所以当x=时,正方形EFGH的面积是.
例4 求下列函数当x = 2时的函数值:
(1)y = 2x-5 ; (2)y =-3x2 ;
(3); (4).
分析 函数值就是y的值,因此求函数值就是求代数式的值.
解 (1)当x = 2时,y = 2×2-5 =-1;
(2)当x = 2时,y =-3×22 =-12;
(3)当x = 2时,y == 2;
(4)当x = 2时,y == 0.
例5 游泳池应定期换水.某游泳池在一次换水前存水936立方米,换水时打开排水孔,以每小时312立方米的速度将水放出.设放水时间为t时,游泳池内的存水量为Q立方米.
(1)求Q关于t的函数解析式和自变量t的取值范围;
(2)放水2时20分后,游泳池内还剩水多少立方米
(3)放完游泳池内的水需要多少时间
分析 此题要先弄清楚放出的水量,剩余的水量和原存水量之间的关系.然后让学生直接得出函数解析式;第(2)题是由自变量的值求函数值,可由学生自己完成;第(3)题则与第(2)题相反,是已知函数值,求相应自变量的值,可化归为解方程.
四、交流反思
1.求函数自变量取值范围的两个依据:
(1)要使函数的解析式有意义.
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.
(2)对于反映实际问题的函数关系,应使实际问题有意义.
2.求函数值的方法:跟求代数式的值的方法一样就是把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.
五、检测反馈
1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:
(1)一个正方形的边长为3 cm,它的各边长减少x cm后,得到的新正方形周长为y cm.求y和x间的关系式;
(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n封这样的信所需邮资y(元)与n间的函数关系式;
(3)矩形的周长为12 cm,求它的面积S(cm2)与它的一边长x(cm)间的关系式,并求出当一边长为2 cm时这个矩形的面积.
2.求下列函数中自变量x的取值范围:
(1)y=-2x-5x2; (3) y=x(x+3);
(3); (4).
3.一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离s(米)由下式给出:s=10t+2t2.假如滑到坡底的时间为8秒,试问坡长为多少?
4.当x=2及x=-3时,分别求出下列函数的函数值:
(1) y=(x+1)(x-2);(2)y=2x2-3x+2; (3).
六、作业布置
作业本和书本P158-159的作业题
7.3 一次函数(1)
〖教学目标〗
◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗
◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗
比较下列各函数,它们有哪些共同特征?
提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。当 时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?
(2)在什么条件下,为正比例函数?
(3)对于一般的一次函数,它的自变量的取值范围是什么?
做一做:
下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?
例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:
某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
正方形周长与面积之间的关系。
假定某种储蓄的月利率是0.16%,存入1000元本金后。本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,
求关于的一次函数关系式。
求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10%
设全月应纳税所得额为元,且。应纳个人所得税为元,求关于的函数解析式和自变量的取值范围。
小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。问她俩每月应纳个人所得税多少元?
提示:此题较为复杂,而有关个人所得税的计算方法和一些专有名词学生可能很生疏。所以讲解时,首先要帮助学生理解问题,对个人所得税,应纳税所得额这些名词的含义要予以说明。尤其是根据累进税率计算个人所得税的方法,要举例说明。例如,某人某月工资收入为2400元,则应纳税所得额为,应纳个人所得税为。讲解第(2)题时,要提醒学生注意函数解析式中自变量的意义,表示的是工资中应纳税的部分,所以不能把题设中的工资额直接代入函数解析式计算个人所得税。
解:(1)
所求的函数解析式为,自变量的取值范围为。
(2)小明妈妈的全月应纳税所得额为将代入函数解析式,得
小聪妈妈的全月应纳税所得额为将代入函数解析式,得
答:小明妈妈每月应纳个人所得税155元,小聪妈妈每月应纳个人所得税175元。
练习:教科书,1,2。
作业:教科书A组 ,B组;作业本(2)。
7.3 一次函数(2)
〖教学目标〗
◆1、知识与技能目标:
通过本节课学习,使学生进一步巩固一次函数的知识;掌握待定系数法的一般步骤,求一次函数的解析式;会用一次函数的知识来描述实际问题。
◆2、过程与方法目标:
为分散例3的教学难点,用引例作铺垫;另一方面,在解决实际问题中,选择用一次函数的知识来解决,突出建模思想。
◆3、情感与态度目标:
从沙漠蔓延是严重的自然灾害之一这个实际问题的提出,有利于激发学生的学习兴趣,养成植树造林、保护环境的好习惯。
〖教学重点与难点〗
◆教学重点:用待定系数法,求一次函数的解析式。
◆教学难点:例3问题用待定系数法的过程比较复杂。
〖关键〗
讲解例3时通过合作学习,找出几个不变量:
①.沙漠面积每年以相同的速度增长。
②.1995年底的沙漠面积。但它们是多少不知道。
〖教学过程〗
(一)复习回顾,引入新知。
我们在上一节课已学习了有关函数的概念,大家必定知道一次函数的解析式:
生:函数y=kx+b (k≠0,k、b为常数)。我们称y是x的一次函数。
那么要求出函数y=kx+b的解析式,必须要求出k、b这两个常数。这节课我们根据题 意,确定系数k、b,提出课题。
(二)利用引例,探求新知。
引例 已知y是x的一次函数,且当x=0时,y=2;当x=1时,y=-1。求y关于x的函数解析式。
分析:① 由y是x的一次函数,它的解析式是什么?答:y=kx+b (k≠0,k、b为常数)。
② 要求出函数y=kx+b的解析式,应求出k、b。
③ 根据题意、得到关于k、b的方程组
解:∵ y是x的一次函数,
∴ y=kx+b (k≠0,k、b为常数),
当x=0时,y=2;
∴ 2=0+b
当x=1时,y=-1
∴ -1=k+b
∴ k= - 3, b=2
∴ y关于x的函数解析式是:y= -3 x+2。
课内练习:p 163 做一做 1、2。
通过引例和练习,我们可发现,对于已知函数的种类时,我们可以设这个函数的解析式,利用已知条件,通过列方程组的方法,来求k、b的值。这种方法称为待定系数法,下面简单小结它的解题步骤:
⑴ 由y是x的一次函数,可以设所求函数的解析式为:y=kx+b (k≠0,k、b为常数),
⑵ 把两对已知的变量的对应值分别代入y=kx+b ,得到关于k、b的二元一次方程组。
⑶ 解这个关于k、b的二元一次方程组,求出k、b的值。
⑷ 把求得k、b的值代入y=kx+b,得到所求函数的解析式。
注:若题目中没有指明是哪一类函数,就要通过分析题设中所给的数量关系来判断。
(三)合作学习、应用新知。
例3 某地区从1995年底开始,沙漠面积几乎每年以相同的速度增长。据有关报道,到2001年底,该地区的沙漠面积已从1998年底的100.6万公顷扩大到101.2万公顷。
可选用什么数学方法来描述该地区的沙漠面积的变化?
如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到多少万公顷?
(插入情感教育:①图片、②文字、时间不超过节分钟)
人类要生存,要推动社会向前发展,就必须同各种各样的困难作斗争,包括同自然灾害的斗争。沙漠蔓延是严重的自然灾害之一,因为它无情地吞噬土地,给人类带来极大的危害。据统计,全世界有63个国家受沙漠之害,总面积已达2000万平方公里,相当于两个中国,而且还在以每年5800平方公里的速度蔓延、扩大。通过学习,我们要植树造林、保护环境。
(下面问题,先由学生独立思考,然后合作学习。对学生中出现的共性问题,教师分析,即以学生为主体)
① 我们已经学习了那些描述量的变化的方法?
答:正比例函数,一次函数。
② 所给问题中有哪些量?哪些是常量?哪些是变量?
答:常量: 沙漠面积几乎每年以相同的速度增长。
1995年底的沙漠面积。
变量: 沙漠面积随着时间的变化而不断扩大。
③ 如果沙漠面积的增长速度为k万公顷/年,那么经x年增加了多少万公顷?答:kx.
如果1995年底该地区的沙漠面积为b万公顷,经x年该地区的沙漠面积增加到y万公顷。y与x之间是哪一类函数关系式?
答:∵ y=kx+b ∴ 是一次函数关系式。
④ 求y关于x的函数解析式,只要求出哪两个常数的值。答:k、b。
⑤ 根据题设条件,能否建立关于k、b的二元一次方程组?怎样建立?
答:当x=3时,y=100.6 ; 当x=6时,y=101.2 。
∴
解: 设从1995年底该地区的沙漠面积为b万公顷,经过x年沙漠面积增加到y万公顷。由题意,得
y=kx+b,且当x=3时,y=100.6 ; 当x=6时,y=101.2 。
把这两对自变量和函数的对应值分别代入y=kx+b,得
解这个方程组,得
这样该地区沙漠面积的变化就由一次函数y=0.2x+100来进行描述。
把x=25代入y=0.2x+100,得 y=0.2╳25+100=105(万公顷)。
可见,如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到105万公顷。
(四)课内练习 p 164 1、2。
(五)归纳小结,梳理知识。
请学生谈谈自己学习本节课的收获:
掌握待定系数法的解题步骤。
如果y是x的一次函数,那么可设y=kx+b,再用待定系数法。
对于没有指明是哪一类函数,应首先明确,这是何种函数。
分层作业: 必做题 p 164 1、2、3、4。
选做题 p 165 5、6.
7.4 一次函数的图象(2)
〖教学目标〗
◆1、使学生掌握一次函数的性质.
◆2、通过画一次函数,探究一次函数的性质,体验学习的乐趣.
◆3、培养学生的观察、比较、归纳能力.
〖教学重点与难点〗
◆教学重点:一次函数的性质.
◆教学难点:例2的问题情境及函数的图象和性质等多方面知识的应用.
〖设计理念〗
◆从画一次函数图象着手,理解一次函数的性质:函数y=Kx+b(k≠0),当k>0时,函数值随自变量的增加而增大;当k<0时,函数值随自变量的增加而减小。并运用这一性质判别函数的增减变化.
〖教学过程〗
(一) 回顾1. 画函数图象的一般步骤有哪些?2. 请你快速画出函数y=2x+3的图象。(二) 探究1. 从你画的函数图象中能否看出,对于一次函数y=2x+3,当自变量的取值由小变大时,对应的函数值怎样变化?2. 画出函数y=-2x+3的图象。演示动画,帮助学有困难的学生巩固画函数图象知识。刚才画的函数图象上,你能不能看出,当自变量x由小变大时,对应的函数值怎样变化?3. 猜猜看:一次函数y=kx+b(k≠0)中,k的取值与函数变化有什么关系?(三) 归纳:一次函数的性质:一次函数y=kx+b(k≠0),当k>0时,函数值随自变量的增加而增大;当k<0时,函数值随自变量的增加而减小。 学生做一做,巩固一次函数的性质。(四)例题分析:例2 我国某地区现有人工造林面积12万顷,规划今后10年新增造林61000—62000公顷。请估算6年后该地区的造林总面积达到多少公顷?分析:1、有造林面积和时间得到什么?(用怎样的函数解析式来表示) 2、6年后的造林总面积应该怎样算? 例3 要从甲、乙两仓库向A,B两工地运送水泥。已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A工地需70吨水泥,B工地需110吨水泥。两仓库到A,B两工地的路程和每吨每千米的运费如下:路程(千米)运费(元/吨.千米)甲仓库乙仓库甲仓库乙仓库A地20151.21.2B地252010.8(1)设甲仓库运往A地水泥x吨,求总运费y关于x的函数解析式,并画出图象;(2)当甲、乙两仓库各运往A,B两工地多少吨水泥时,总运费最省?最省的总运费是多少?1、库运出的水泥吨数和运费列表分析。2、利用图象法求出最小值。(五) 练习:P172 学生练一练(六)小结:学生归纳本堂学到的知识(七) 作业:P172作业题(八) 拓展:课后学生探索函数y=kx+b(k≠0)中b 的变化对函数图象影响。 过程评价根据画图情况,肯定学生成绩对于积极思考,勇于回答的同学予以肯定,对于学有困难的同学加以引导引导学生积极思考,认真归纳练习中肯定成绩,发现问题,及时纠正给学生合理评价
7.5 一次数函数的简单应用(1)
〖教学目标〗
◆1、理解和掌握一次函数的图像及其性质
◆2、学会运用函数这种数学模型来解决生活和生产中的实际问题,增强数学应用意识
〖教学重点和难点〗
教学重点:一次函数图像及其性质
教学难点:体会函数、方程、不等式在解决实际问题时的密切联系,并在一定条件下互相转化的各种情形,感受贴近生活的数学,培养解题能力。
〖教学过程〗
一、课前预习
1、判断题(1)正比例函数是一次函数 ( √ )
(2)一次函数是正比例函数 ( × )
(3)一次函数图像是一条直线 ( √ )
2、已知直线y= —X,下列说法错误的是 ( D )
A 比例系数为-1/2 B 图像不在一、三象限
C 图像必经过(-2 ,1)点 D y随x增大而增大
二、新课教学
1、引出概念
确定两个变量是否构成一次函数关系的一种常用方法就是利用图象去获得经验公式,这种方法步骤是:
(1)通过实验,测得获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系内以各对应值为坐标描点,并用描点法画出函数图像。
(3)观察图像特征,判定函数的类型。
2、例题分析:
例1、生物学家测得7条成熟雄性鲸的全长y和吻尖到喷水孔的长度x的数据如下表(单位:m)
吻尖到喷水孔的长度X(m) 1.78 1.91 2.06 2.32 2.59 2.82 2.95
全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90
问能否利用一次函数刻画这两个变量x和y的关系?如果能,请求出这个一次函数的解析式
解:在直角坐标系中画出以表中x的值为横坐标,y的值为竖坐标的7个点。
过7个点几乎在同一条直线上所以所求的函数可以看成一次函数,即可用一次函数来刻画这两个量x和y的关系。
设这个一次函数为y=kx+b,把点(1.91,10.25),(2.59,12.50)的坐标分别代入
y=kx+b得 10.25=1.91k+b
12.50=2.59k+b
解得:k≈3.31
b≈3.93
所以所求函数解析式为y=3.31x+3.93
相应练习:通过实验获得u,v两个变量的各对应值如下表
u 0 0.5 1 1.5 2 2.5 3 4
v 50 100 155 207 260 290 365 470
判断变量u,v 是否近似地满足一次函数关系式,如果是,求v关于u的函数关系式,并利用函数解析式求出当u=2.2时,函数v的值。
例2、沙尘暴发生后,经过开阔荒漠时加速,经过乡镇,遇到防护林带区则减速,最终停止,某气象研究所观察一场沙尘暴从发生到结束的全过程,记录了风速y(km/h)随时间t(h)变化的图像。
求沙尘暴的最大风速
用恰当的方式表示沙尘暴风速y与时间t的关系。
解:(1)从图可知,沙尘暴最大风速为32km/h
(2)当o≤t≤4时,y与t成正比例关系
设y=kt,直线y=kt 经过(4、8)
∴k=2,即y=2t(0≤t≤4)
当4≤t≤10时,y是t的一次函数
设y=k1t+b,直线y=k1t+b经过点(4,8),(10,32)
∴ 4k1+b=8 解得: k1=4
10k1+b=32 b= -8
∴y=4t-8(4≤t≤10)
当10≤t≤25时,y=32(10≤t≤25),即风速是一个常量32km/h
当25≤t≤57时,用同样方法求得y=-t+57(25≤t≤57)
3、小结
讲解完例题后,归纳一下,一次函数的图像用其性质,让学分析请题意,注意灵活运用。
注意自变量的取值范围。
4、作业
(1)课内练习及作业题
(2)作业本
7.5 一次数函数的简单应用(2)
〖教学目标〗
◆1、会综合运用一次函数的解析式和图象解决简单实际问题.
◆2、了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与两条直线的函数解析式所组成的二元一次方程组的解之间的关系.
◆3、会用一次函数的图象求二元一次方程组的解(包括近似解).
〖教学重点与难点〗
◆教学重点:本节教学的重点是运用一次函数的解析式和图象等解决简单实际问题.
◆教学难点:构造数学模型(包括函数解析式和图象)与实际问题情景之间的对应关系,是本节教学的难点.
〖教学过程〗
一.创设情景,引入新课:
我们知道在日常生活和生产实践中有不少问题的数量关系可以用一次函数来刻画。比方说行程问题,如果速度是常量,则路程与时间成一次函数关系。
看投影:
二.合作学习,思考探究
活动一:思考以下几个问题:
1.涉及几个一次函数关系?
2.各个函数关系中,包含哪些常量,哪些变量?
3.小聪和小慧出发的时刻是否相同?出发的地点呢?
4.如果这两个一次函数都用t表示自变量,那么t=0的实际意义是什么 如果分别用s1, s2表示小聪与小慧的行驶的路程,那么当t=0时,s1, s2分别是多少?
小组讨论后汇总,一起制定解题的政策和方法,老师做启发:
1.如果能求出经过多少时间小聪能追上小慧,那么问题解决了吗?
2.对于求小聪追及小慧的时间,可以用几种不同的方法来解决?
(用方程s1 =s2,或图象法,这里学生不一定想到图象,给予提示)
3.不管是采用方程(s1 =s2),还是利用图象(图象交点的横坐标表示追及所经过时间,交点的纵坐标表示追及时两人行驶的路程),解决问题首先要做的工作是什么?
教师总结,板书解题过程。(见书本)
三.应用新知,拓展提高
1.一次招聘会上,A,B两公司都在招聘销售人员。A公司给出的工资待遇是:每月1000元基本工资,另加销售额的2﹪作为奖金;B公司给出的工资待遇是:每月600元基本工资,另加销售额的4%作为奖金。如果你去应聘,那么你将怎样选择?
小组讨论,然后请同学黑板上板书。
2.利用一次函数的图象,求下列二元一次方程组的解(或近似解):
(1) (2)
3.某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印刷费,另收1500元制版费;乙印刷厂的收费标准是:每份材料收2。5元印制费,不收制版费。
(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;
(2)在同一直角坐标系中画出它们的图象。
(3)根据图象回答下列问题:印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3000元用于印刷宣传材料,找哪一家印刷厂能印刷宣传材料多一些?
四.课堂练习
详见书本作业题。
五.知识整理
1.直角坐标系中两条直线(不平行于坐标轴)的交点坐标与两条直线的函数解析式所组成的二元一次方程组的解之间的关系。
2.会用一次函数的图象求二元一次方程组的解(包括近似解)。
六.作业
7.5(2)作业本。
T
x
函数的概念
函数表示方法
解析法
列表法
图象法
函数值6.1探索确定位置的方法
一、背景介绍及教学资料
有序数对法确定点的位置在生活中有着广泛的应用,如电影票,海上搜救,地球仪上的经纬法等等。本教材一改过去有老师马上给出平面直角坐标系的做法,而是给出一些实际情境,以小学里曾学过的数对法确定位置为基础,让学生在探索中,亲身体验知识的发生过程,为下一课时平面直角坐标系的提出打下基础。其他教材中提及的区域定位法在教师也可以酌情加以介绍。
教学内容分析:
本节课一开始,让学生拿着票找座位,使学生在在实际情景中,亲身体会用数对表示位置的必要性,通过探索明白如何用有序数对定位。接着,以海上搜救工作为例,说明方向、距离定位法的广泛应用,并体会两种定位法的异同,再结合本地地图,综合应用这两种方法为自己所在地定位,进一步巩固两种定位法,最后以探究活动:球面上点的经纬定位法把本节课提升到更高的境界。
教学目标:
探索确定平面上物体位置的方法;
体验用有序实数对表示平面上点的位置的坐标思想,体验用方向和距离表示平面上点的位置的坐标思想;
初步会用有序实数对和方向、距离表示平面上点的位置.
教学重点与难点:
教学重点:探索在平面上确定位置的两种常用方法.
教学难点:本节“合作学习”涉及两种确定方法的运用,还涉及测量、比例计算等方面,是本节教学的难点.
教学准备:刻度尺 方格纸 量角器
教学过程:
教学设计 设计说明
环节一(有序数对定位)1、创设情景,合作学习。(1) 分给每位学生一张座位票,其中个别学生拿到的票只有排号或序号,有两位学生的座位号是一样的; 3号 3排 5排2号 5排2号 (2)不规定班级位置中的排号或序号,让学生自己找位置,在这过程中产生问题:哪一排是第一排,哪一个位置是第一号呢?(3) 让学生规定排法:学生1: 学生2: 1号 2号 2号 1号第一排 ○ ○ ○ ○ ○ 第一排 ○ ○ ○ ○ ○第二排 ○ ○ ○ ○ ○ 第二排 ○ ○ ○ ○ ○ … ○ ○ ○ ○ ○ … ○ ○ ○ ○ ○ … ○ ○ ○ ○ ○ … ○ ○ ○ ○ ○学生3:……(4) 然后老师选取其中一种排法,如第一种排法,给出多媒体画面,让学生根据画面上规定的排法找位置。(5)大部分同学能找到自己的位置,但有个别同学找不到自己的位置。 让找不到座位的同学自己说说原因,其他同学帮他决。(6) 讨论原因:原来是票弄错,只有排号或序号;有两张票的座位号相同。(让学生体会平面上确定位置需2个数据)(7)结合刚才寻找座位的过程,确定自己的座位需几个数据?哪两个数据?(8) 如果将你的座位3排2号简记为(3, 2),那么2排3 号如何表示?(5, 6)表示什么含义?(2,7)的位置在哪里?你能用这种方法表示出自己的座位吗? (9)在座位票上,“3排2号”与“2排3号”中的“3”的含义相同吗?有什么不同?这说明了什么?(10)一对数如(5, 2)所表示的座位有几个?一个位置用几个数对来表示?这说明了什么?2.小结:为了表示的简便,把第…排第…号记为数对形式,习惯上把排数写在前,号数写在后,再两头括号,中间逗号。如果把地面看成一个平面,把座位看成平面上的点,那么平面上每一个点都对应着一个有序数对,每一个有序数对都对应着一个点,因此可用有序数对确定平面上点的位置,称之为有序数对定位法。3.练习1:如下图所示是甲乙两位同学五子棋的对弈图,现轮到黑棋下。黑棋在哪个位置上落子,才能在最短时间内获胜?请4位同学上台表演,2位对对弈,但只需说出落子的位置,另2位分别为这2个同学走棋。环节二(方向、距离定位)1.创设情景,合作学习以班长为观测点,怎样确定老师的位置?如下图所示,怎样描述老师的位置?确定老师的位置需要几个数据?一个行吗?为什么?把这种方法叫方向、距离定位法。2.练习2:如下图,8月30日江苏省4艘渔船在回港途中,突遭9级强风,船上共35名船员遇险,岛上边防战士接到命令后立即出发,进行拉网式搜救。以小岛为观测点,你能告诉边防战士渔船A、B、C、D位置吗?小岛南偏西60°方向的15km处是什么?…练习3:某渔船8:00从小岛出发向西航行,10:00折向北航行,平均航速均为20千米?时。问11:30该渔船在什么位置?请先画出航线示意图(比例尺1:1000000),然后量出渔船相对于小岛的方位,并量出距离。环节三 两种方法,灵活运用乐清于1993年经国务院批准撤县设市后,便开始编制现代化中等城市的总体规划,原先若即若离的城镇,大多成了新市区的一部分。乐成片为政治文化中心,柳市、北白象片为工业中心,虹桥片为商贸中心,七里港片为储运中心,翁洋片为石化中心,雁荡山为旅游渡假中心。如今,一个集工贸、旅游、港口为一体的现代化中等城市,正悄然崛起于东海之滨。如图是乐清市局部示意图,请借助刻度尺、量角器,设计描述各城镇位置的方法。(比例尺为1:420000)环节四(经纬定位法)创设情景,合作学习平面上的点可用这两种方法来定位,那么球面上的点呢?例如,怎样在地球仪上确定温州的位置呢?你能描述温州的位置吗?把经度写在前,纬度写在后,两头括号,中间逗号,写成数对形式就叫做经纬法。2.练习5:如下图,今年第5号台风“海棠”,7月17日晚上8时中心位置在台湾省台北市东南方向大约795公里的洋面上,即北纬20.7度,东经127.7度,中心气压910百帕,近中心最大风力12级以上(65米/秒)。而后台风中心向西北方向移动,并于18日夜间到19日中午在福建到浙江南部一带沿海登陆。请用数对的形式表示台风中心位置,并在图上标出台风中心。(130,30)(120,25)是否位于台风移动的主要路径上?环节五 归纳小结,梳理知识这节课你有什么收获和体会?环节六 布置作业 书本127页作业体A组,B组选做 创设情景,激发学生的兴趣,使他们体验到数学就在生活中。让学生自主探索新知,充分调动积极性,,比单纯由教师讲授新知更能培养学生的能力。让学生体会到:在平面内确定一个座位需2个数据。 让学生体会到,平面上的点与实数对是一一对应的,渗透对应思想和数形结合思想。智力游戏五子棋不但可以吸引学生的注意力,激发学习兴趣,无形中还巩固了新知识。从身边的例子着手,让学生更容易理解。用几何画板分别演示角度、距离变化,更能体现动感。运用生活中的实际例子更能说明数学来源于生活,又服务于生活。锻炼学生的画图能力是为了提高学生的审题水平。以本地地图为载体,不仅可以激发学习的兴趣,也使学生在数学课堂上得到热爱家乡的道德教育。从平面到球面是一个跳跃,要使学生在探究中明白球面上的点也需要有序数对来定位。适度的练习能使新知识及时得到巩固。在教师的引导下,学生自主进行归纳,能够使所学的知识及时地纳入学生的认知结构。这里教师适时的修正、补充、强调也必不可少。
设计说明:
本课时是按“问题情境——数学活动——概括——巩固、应用和拓展” 的模式呈现,这种方式符合学生的认知规律和学习规律,因此也是课堂教学设计的立足点,就是根据这一模式进行设计的。
学生的学习态度决定了学习效果,一堂课成功与否与学生的参与度紧密相连。本案用大量的实际例子,内容贴近学生的生活实际,充满生活气息,更好地激发了学生的学习兴趣,吸引了注意力。
每个教学环节之间环环相扣,衔接自然,整堂课思路清晰又显得十分流畅。
注重知识点的联系与区别,每一个知识点后都附有相应的练习,使新知识及时得到落实。
6.2 平面直角坐标系(1)
〖教学目标〗
◆1、认识并能画出平面直角坐标系.
◆2、在给定的直角坐标系中,会根据坐标描画点的位置,由点的位置定出它的坐标.
〖教学重点与难点〗
◆教学重点:确定坐标平面内点的坐标和根据坐标在坐标平面内确定点的位置.
◆教学难点:平面直角坐标系包含着许多概念学生要完整地认识直角坐标系需要一个较长的过程.
〖教学过程〗
一、创设情境,导入新课
某市旅游景点示意图,如果把“人民广场”
的位置作为起始点,记为(0,0)分别记
向北为正,向东为正。
(1)“镇海楼”的位置在人民广场“东多少
格,北多少格?用有序数对表示“镇海楼”的位置,“玉泉”的位置在“人民广场”西多少格,南多少格?用有序数对表示“玉泉”的位置;
(2)“灵石塔”的位置在“人民广场”西多少格,北多少格?怎样用有序数对表示“灵石塔”的位置?
二、合作交流,感知问题
1、让学生两次经历用有序实数对表示点的位置;
2、规定东西的格数写在前机,并规定向北为正,向东为正;
(让学生分组完成,并记录交流结果)
三、理性概括,纳入系统
结合上面的问题情境,讲解直角坐标系的概念;
(1)直角坐标系由两条具有原点,且互相垂直的数轴组成;
(2)两条数轴把平面划分成四个部分,依次叫做第一象限,第二象限,第三象限,第四象限,如课本图6-5,数轴上的点不属于任一象限。
(3)如图确定直角坐标系中点的坐标,如图
根据点的坐标在直角坐标系中画出点。
(4)各个象限内点的横坐标,纵坐标的符号让
学生概括。
(5)坐标平面内点与坐标之间的点一一对应关系。
四、做一做
五、应用新知,学以致用
例1(1)如图6-7,写出平面直角坐标中点M,N,L,O,P的坐标;
(2)在平面直角坐标中画出点A(2,4),B(5,2),C(-3.5,0),D(-3.5,-2)。
本例是关于直角坐标系的两个基本问题
一、是已知点的位置,确定点的坐标;
二、是已知点的坐标,确定点的位置。
提示学生(1)写点的坐标时,先根据象限确定符号,x轴上的点纵坐标为零;y轴上的横坐标为零;
(2)画点时,先根据坐标符号确定点的象限位置。再点,纵坐标为零的点在x轴上,横坐标为零的点在y轴上
六、练一练
如下图.
(1)写出图中六边形各个顶点的坐标; 它们各在什么象限内或坐标轴上?
哪些点的横坐标相同?哪些点的纵坐
标相同?
(2)作出点(-2, )
(第(1)题请几位学生口答,第(2)题
让学生到黑板上演示。)
七、小结回顾,反思提高
让学生谈谈本节课有哪些收获和疑问
1、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴。x轴和y轴总称坐标轴,它们的公共原点O称为直角坐标的原点。
3、坐标轴上的点不在任何一个象限内
4、坐标的表示方法
八、布置作业,深入体会
课本作业题
6.2 平面直角坐标系(2)
〖教学目标〗
◆1、会在实际情景中,用坐标表示地点的位置.
◆2、会根据所要表示的图形的需要建立直角坐标系,并用坐标表示图形上的点.
◆3、会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.
〖教学重点与难点〗
◆教学重点:本节教学的重点是根据要表示的图形的需要建立适当的直角坐标系,并在直角坐标系中画出图形.
教学难点:例3的思路比较复杂,需要学生有较高的综合运用知识的能力,是本节教学的难点.
〖教具准备〗
◆小黑板、直角三角板
〖教学过程〗
复习提问
引导学生回忆:(演示小黑板上的练习)
(1)两条相交的数轴一定能组成平面直角坐标系吗?
(2)坐标平面内的每一个点的位置由_______________________来确定。
(3)(2,3)与(3,2)所表示的两个点相同吗?
(4)一条水平数轴上的点的坐标与平面直角坐标系中X轴上的点的坐标表示的形式一样吗?
(5)、坐标轴上的点有何特征?
(6)、每个象限上的点有何特征?
二、讲授新课
1.创设问题情境
我们已经学过如何建立平面直角坐标系及怎样确定坐标平面内点的坐标和根据坐标在坐标平面内确定点的位置。今天,我们将进一步学习如何利用直角坐标系解决实际问题。而在生活中还常常遇到需要确定点在平面内的位置的情况.比如:(演示小黑板上的例1)
例1 某公园中有“音乐喷泉”“绣湖”“游乐场”“蜡像馆”“蝴蝶园”等景点,如图6-9,以“音乐喷泉”为原点,取正东方向为x轴的正方向,取正北方向为y轴的正方向,一个方格的边长作为一个单位长度,建立直角坐标系。分别写出图中“绣湖”“游乐场”“蜡像馆”“蝴蝶园”的坐标。
(1)分析:例1的主要目的是复习巩固上一课时的内容——由点的位置写出它的坐标。在这个例题中我们要理解两个问题:①何为原点;②坐标轴方向的实际意义是什么?(学生可以小组讨论,然后派代表发言。)
(2)由一名学生到上面,在小黑板上按要求建立平面直角坐标系,然后同学们集体加以点评,教师强调建立平面直角坐标系时应注意的几个问题。
(3)教师板演,学生读出坐标系内四个景点的坐标。
解:以“音乐喷泉”为原点,以过“蜡象馆”“音乐喷泉”的直线为x轴,过“音乐喷泉”,垂直于x轴的直线为y轴,建立直角坐标系(如图6—10)。则“绣湖”“游乐场” “蜡象馆”“蝴蝶园”的坐标分别为(4,-1),(-3,3),(-4,0),(-3,-2)。
小结:在建立直角坐标系表示给定的点或图形的位置时,一般应选择适当的点作为原点,适当的距离为单位长度,这样往往有助于表示和解决有关问题。
【引申拓展】
如果坐标系的长度单位为1km,分别求“游乐场”“绣湖”到“音乐喷泉”的距离。
分析:在计算坐标平面内点到原点的实际距离时,应先根据坐标长度单位的取法进行单位换算。长度单位为1km,“游乐场”的坐标为(-3,3),即表示
“游乐场”在原点(“音乐喷泉”)的西3km、北3km处。
求坐标平面内点到原点的距离的依据是勾股定理。其实利用坐标确定点的位置的作图过程就已经构造了一个求到原点距离的直角三角形,如图。
例2 一个直四棱柱的俯视图如图6-11所示。请建立适当的坐标系。在直角坐标系中作出俯视图,并标出各顶点的坐标。
(演示小黑板上的例2)
(1)分析:要在直角坐标系中画出所给俯视图,并标出四个顶点的坐标,首先考虑这个俯视图在直角坐标系中怎样放,才能使确定各顶点的坐标的过程简单(应使四个顶点尽可能多的落在数轴上)。即如何在这个俯视图所在的平面建立一个直角坐标系,使得确定四边形ABCD的各个顶点的坐标变得简单。建立起合理的直角坐标系后,确定各个顶点的坐标,利用求得的各顶点的坐标,在给定的直角坐标系中画出各个顶点,依次连结各个顶点,就能作出所求作的俯视图。
(2)问:①为较方便地确定点A,点B在坐标系中的坐标,可怎样选择x轴?为较方便地确定点D的坐标,如何选择y轴?
②根据所标注的尺寸,如何选择坐标轴的单位长度?
(3)强调:为了使画图方便,所给定的直角坐标系的单位长度应与上述分析过程中的单位相同,即1单位长度为100mm。
要求每位学生在草稿纸上画一画,教师巡视加以指导,然后请一位学生板演。
(学生一起口述解答过程,教师板演。)
解:建立直角坐标系如图,选择比例为1:10。取点E为直角坐标系的原点,使俯视图中的线段AB在x轴上,则可得A,B,C,D各点的坐标分别为(-1,0),(2,0),(2.5,1.5),(0,3.5)。
根据上述坐标在直角坐标系中作点A,B,C,D,并用线段依次连结各点,如图6-12中的四边形就是所求作的俯视图。
三、巩固练习(讲与练结合方式进行教学)
课内练习
四、小结
由学生自己讨论进行
五、作业
作业本(1),课后练习A组;
有能力的同学加上完成B组练习.
6.3坐标平面内的图形变换
背景介绍及教学资料
七年级下册第2章图形和变换中已从几何的角度了解了轴对称变换与几何变换,本章从坐标的角度来研究这两种变换,并利用图形变换与坐标之间的关系来作图。虽然但就作图而言,可能不如几何画法方便,但这种画法在计算机制图等方面有着广泛的实际应用。此外对这两种变换的学习,为下一章函数当中的相关应用奠定了基础。
第1课时
教学内容分析:
本节开头是让学生通过动手画图,自己探索,找出关于坐标轴对称的两个点之间的坐标关系,得出一般规律,再依据这种关系,求作已知点关于坐标轴的对称点。因为两个端点可以确定一条线段,所以只要作出各个转折点关于对称轴的对称点,依此连接就得到一个多边形关于对称轴的对称图形。最后,与同伴合作学习,在方格纸上,按自己认为合适的比例,建立适当的坐标系,利用轴对称特点画出一个零件的主视图。
教学目标:
感受坐标平面内图形变换的坐标变换;
了解关于坐标轴对称的两个点的坐标变换;
3、会求与已知点关于坐标轴对称点的坐标;
4、利用图形变换与坐标之间的关系来作图;
5、进一步培养坐标意识与数形结合的数学思想。
教学重点与难点:
教学重点:关于坐标轴对称的两个点之间的坐标关系。
教学难点:利用关于坐标轴对称的两个点之间的坐标关系,在平面直角坐标系内作轴对称图形。
教学准备:刻度尺、方格纸
教学过程:
教学设计 设计说明
合作交流,寻找规律如图,在方格纸上任画点A,写出它的坐标;分别作出点A关x轴,y轴的对称点,并写出它们的坐标。(3)与同伴交流,比较点A与它关于x轴的对称点的坐标,点A关于y轴的对称点的坐标,你发现什么规律?二、总结规律,运用提高1.从上面的合作学习中得到:在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)2.练习:已知平面上有6个点,坐标分别为A(-2,3)、B(2,3)、C(-2,-3)、D(2,0)、E(1,-)、F(0,1.5),其中,点D关于y轴的对称点是-----------,点F关于X轴的对称点是-----------,点E关于X轴的对称点是-------,关于y轴的对称点是---,点A与点B关于------------轴对称,点A与点C关于------------轴对称。3.例题:课本137页4.练习:课内练习1三、综合运用,服务实际课本13页合作学习2.练习:课内练习2四、梳理知识,纳入体系通过这节课,你学到了什么?五、家庭作业,巩固提高课本作业题A组,B组选做。 让每人任选一点,赋予学生充分的自主性,通过小组内各成员的合作交流,共同发现规律。用字母表示有一定的难度,这里特别指出这个规律与点在哪一象限无关。基础练习利于性质的掌握。虽然但就作图而言,可能不如几何画法方便,但这种画法在计算机制图等方面有着广泛的实际应用。不同的同学选取不同的比例,建立不同的坐标系,呈现出思维的多样化,通过比较发现,选取不同的比例得到的大小不同的图形,相当与对原来图形作不同的相似变换。这样一来,不但节约了时间,又锻炼了自主能力。不要去深入研究相似变换中坐标的规律。让学生自己、概括,无形中复习了一次,比听老师总结更能培养数学语言及归纳能力。
设计思路:
教学改革主要是学习方式的改革,过去习惯于用灌输法,整堂课都由老师告诉学生该怎么做,学生只是被动接受,老师讲得累死,学生学习效果却不好。这节课安排了两处的合作学习,充分调动学生的积极性,让学生主动探索,经历思维的发生过程。
本课给出一些非常美丽的图案以及在生活中能碰到的实物的图案,在数学课中实施美育,在数学课上融入生活。
图形变换是培养数形结合思想发展空间观念的有效载体,很多题目可以让学生发挥想象力,而不一定借助于图形。
6.3坐标平面内的图形变换(2)
教学内容分析:
本节开头是让学生动手画图,通过列表比较,,找出关于点平移时的坐标变化的规律,学会求已知点左右,上下平移后所得像的坐标,并能根据平移后对应点之间的坐标关系,分析已知点的平移关系。在此基础之上,研究线段经平移后所得的像,最后上升到一个图形的多种平移的组合。
教学目标:
感受坐标平面内图形变换时的坐标变换;
了解坐标平面内图形左、右或上、下平移时的对应点之间的坐标关系;
3、会求与已知点左、右或上、下平移后的像的坐标;
4、利用平移(左、右或上、下)后对应点之间的坐标关系,分析已知图形的平移关系;
5、进一步培养坐标意识与数形结合的数学思想及空间想象能力。
教学重点与难点:
教学重点:坐标平面内图形左、右或上、下平移时的对应点之间的坐标关系。
教学难点:利用平移(左、右或上、下)后对应点之间的坐标关系,分析已知图形的平移关系。
教学准备:刻度尺、方格纸
教学过程:
教学设计 设计说明
合作交流,寻找规律如图,在方格纸上任画点A,写出它的坐标;分别把A点向左、向右平移5个单位,并写出它们的坐标。分别把A点向上、向下平移3个单位,并写出它们的坐标。与同伴交流,比较点A与它的像坐标,你发现什么规律? 二、总结规律,灵活运用从上面的合作学习中得到:坐标平面内的点与平移h(h0)个单位后所得的像的坐标的关系如下: (a,b+h) 向上 向左 向右 (a+h ,b) (a,b) (a-h ,b) 向下 (a,b-h)2.练习:已知平面上有6个点,坐标分别为A(-2,3)、B(2,3)、C(-2,-3)、D(2,0)、E(1,-)、F(0,1.5),其中,点D向下点平移2个单位后的像的坐标是-----------,点E向右点平移2个单位后的像的坐标是是-----------,点F向左点平移2个单位后的像的坐标是-----------,所得的像再向上平移2个单位后的像的坐标是-----------,点A向------------平移-----------单位得到点B,点A向------------平移-----------单位得到点C,点B向先向------------平移-----------单位,再向------------平移-----------单位得到点C.3.课本142页例24.练习:在直角坐标系中,长方形ABCD的边AB可表示成(2,y)(-1y3),边BC可表示成(x,3)(2 x 5),则点D的坐标是什么?边CD该如何表示?四边形ABCD的面积为多少?并在直角坐标系中画出这个长方形。三、综合运用,提高创新1.课本142页例3图分别求出A、、B、的坐标,并比较A与,B与的坐标变化;(2)从图甲到图乙可以看做经过怎样的图形变换?(3)从图甲平移到图乙,可以看做只经过一次平移变换吗 请描述这个变换.(4) 把图甲平移,使点A移至点O,求点B的对应点的坐标,并画出图甲平移后的像.四、梳理知识,纳入体系通过这节课,你学到了什么?五、家庭作业,巩固提高课本作业题A组,B组选做。 让每人任选一点,赋予学生充分的自主性,通过观察、填表、比较,小组内各成员的合作交流,共同发现规律。用字母表示有一定的难度,这里特别指出这个规律的记忆方法:左右对应加减,上下对应加减。基础练习利于性质的掌握。题干中先给出平行于坐标轴的线段上的点的表示方法,这类“新定义”题型属第一次出现,难度较大,适当加以练习。第(1)题要着重引导学生注意A ,B 的横坐改变量,纵坐标改变量是否相同。从对应点的平移到整个图形的平移,循序渐进,使学生易于接受.第(2)小题实际是一个开放题,从图甲到图乙,既可以看做经过两次平移的结果,也可以看做经过一次平移的结果,当然还可以看做经过多种变换组合的结果.这里既复习了两点之间线段最短,又复习了勾股定理.画图时仍需强调先画各转折点的像.让学生自己、概括,无形中复习了一次,比听老师总结更能培养数学语言及归纳能力。
设计思路:
(1)导入部分安排了合作探究,尽量让学生自己去发现规律,体现数学思维的过程,培养学生的创新思维。
(2)本课大量借助电脑动画技术,形象地演示移动的过程,但是,一般安排在题目之后,,仅仅起到验证学生自己得出的规律的作用,这样避免把结果通过电脑直接告诉学生,更好地培养空间想象能力。
(3)例2是“新定义”题型属第一次出现,难度较大,课内只安排了一个线段表示法的相应的练习,由于时间关系,没有安排“新定义”题型的相关练习,但教师可以在家庭作业中适当加以补充,培养学生的阅读能力。
O
1
2
3
4
1
2
3
4
-1
-2
-3
-4
-1
-2
-3
-4
x
y
A
O
1
2
3
4
1
2
3
4
-1
-2
-3
-4
-1
-2
-3
-4
x
y
A课题:§5.1 不等关系
教学目标:
知识目标:了解不等式的意义.
能力目标:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力.
情感目标:1、感受生活中存在着大量的不等关系.
2、初步体会不等式是研究量与量之间关系的重要模型之一.
教学重、难点:
重点:不等式的意义.
难点:经历由具体实例建立不等式模型的过程,进一
步发展学生的符号感与数学化的能力.
教学准备:
教师准备:课件.
教学设计过程:
一、创设情境:
1、下列问题中的数量关系能用等式表示吗?若不能,应该用怎样的式子来表示?
(1)图5-1是公路上对汽车的限速标志,表示汽车在该路段行驶的速度不得超过40km/h.用v(km/h)表示汽车的速度,怎样表示v与40之间的关系?
(2)据科学家测定,太阳表面的温度不低于6000℃。设太阳表面的温度为t(℃)怎样表示t与6000之间的关系?
(3)如图5-2,天平左盘放3个乒乓球,右盘放5g砝码,天平倾斜。设每个乒乓球的质量为x(g),怎样表示x与5之间的关系?
(4)如图5-3,小聪与小明玩跷跷板。大家都不用力时,跷跷板左低、右高,小聪的身体质量为p(kg),书包的质量为2 kg,小明的身体质量为q (kg),怎样表示p,q之间的关系?
(5)要使代数式有意义,x的值与3之间有什么关系?
二、探究新知:
2、议一议:
观察由上述问题得到的关系式,它们有什么共同的特点?
像v≤40,t≥6000,3x>5,q<p+2,x≠3这样,用符号“<”(或“≤”),“>”(或“≥”),“≠”连成的数学式子,叫不等式(inequality)。这些用来连接的符号统称不等号(inequality symbol)
3、讲解例题
例1 根据下列数量关系列不等式:
(1)a是正数;
(2)y的2倍与6的和比1小;
(3)x2减去10不大于10;
(4设)a,b,c为一个三角形的三条边长,两边之和大于第三边.
做一做:
(1)已知x1=1,x2=2,请在数轴上表示出x1,x2的位置;
(2)x<1表示怎样的数的全体?
4、归纳:x<a表示小于a的全体实数,在数轴上表示a左边的所有点,不包括a在内(如图5—4);x≥a表示大于或等于a的全体实数,在数轴上表示a右边的所有点,包括a在内(如图5一5);b<x<a(b<a=表示大干b而小于a的全体实数,在数轴上表示如图5一6.你能在数轴上分别类似地表示x>a,x≤a和b≤x<a(b<a=吗?
5、讲解例2
一座小水电站的水库水位在12~20m(包括12m,20m)时,发电机能正常工作。设水库水位为x(m).
(1)用不等式表示发电机正常工作的水位范围,并把它表示在数轴上;
(2)当水位在下列位置时,发电机能正常工作吗?①x1=8;②x2=10;③x3=15;④x4=19.
请用不等式和数轴给出解释.
三、巩固反思:
课内练习P102 T1 T2 T3
四、小结:
通过这节课的学习,你有哪些收获?
5.2 不等式的基本性质
〖教学目标〗
◆1、使学生掌握和理解不等式的三条基本性质.
◆2、培养学生观察、分析、比较的能力,会运用不等式的基本性质进行不等式的变形,提高他们灵活地运用所学知识解题的能力.
〖教学重点与难点〗
◆教学重点:不等式的三条基本性质的运用.
◆教学难点:不等式的基本性质3的运用和 不等式的变形以及范例要比较两个代数式的大小的几种方法,学生缺乏这方面的经验,这些是本节教学的难点.
〖教法和学法〗操练合作发现总结式教学法
操练 合作 发现 归纳 应用 总结
〖教学过程〗
一、从学生原有的认知结构提出问题 ,练习问题,解决问题,总结结论。
1.用“<、>、=“完成下列填空:
(1)如果a<- 9,而- 9< 3 ,那么a_____3 。
(2)如果a>- 9,而- 9>-13 ,那么a____-13 。
你发现了什么?你还可以再举例吗?试一试!能得到什么结论?
不等式的基本性质1:
若a<b , b <c ,则a<c ,这个性质也叫做不等式的传递性。
2.通过实验观察,用“<、>、=“完成下列填空:
8_>_5 8+2_>_5+2
10_>_ 7 10-2_>_7-2
你发现了什么?试一试!你能得到什么结论?
通过观察和举实例合作学习,完成下列两个问题,并自己判断前面的猜想的结论是否正确?
(1)已知a <b 和 b <c ,在数轴上表示如图:
a b c
由数轴上a 和 c的位置关系,你能得到什么结论?
(2)若a > b,则 a+ c和 b +c 哪个较大,
a- c和 b- c呢?请用数轴上点的位置关系加以说明。
不等式的基本性质2:
不等式的两边都加上(或减去)同一个数,所得的不等式仍成立。
你总结出来了吗?
做一做
1.用适当的不等号填空:
(1) ∵ 0 1,
∴ a a+1(不等式的基本性质2)
(2) ∵ (a-1)2 0
∴ (a-1)2-2 -2(不等式的基本性质2)
2. a,b两个实数在数轴上的对应点如图所示:用“>”或“<”号填空:
(1)a b; (2) |a| |b|; (3)a+b 0
(4)a-b 0 (5)a+b a-b (6)ab a
b o a
3.通过计算,用“<、>、=“完成下列填空:
2 3 2×(-1) 3×(-1)
2×5 3×5 2×(-5) 3 × (-5)
2×1/2 3×1/2 2×(-1/2) 3 ×(-1/2)
你发现了什么?你还可以再举例吗?试一试!你又有什么样的结论呢?
-2 -3 -2×(-1) -3×(-1)
-2×5 -3×5 -2×(-5) -3 × (-5)
-2×1/2 -3×1/2 ,-2×(-1/2) -3 ×(-1/2)
不等式的基本性质3:
不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等号的方向不变。不等式的两边都乘(或都除以)同一个负 数, 必须把不等号的方向改变,所得的不等式成立。
再做一做
我国于2001年12月11日正式加入世界贸易组织(WTO)。加入前,产品A的进口税超过产品B的进口税的1倍以上;加入后,这两种产品的进口税都下调了15%。你认为加入后产品A的进口税仍超过产品B的进口税的1倍以上吗?请说明理由。
二、对学生刚学的知识进行巩固应用
1.范例讲解:
已知a < 0, 试比较2a 与a 的大小
解法一:举实例法
解法二:数轴表示法
解法三:应用性质2移项法
2.课内练习:书本P:106
3.探究活动:比较等式与不等式的基本性质
三、对这节课所学知识回顾总结
1。这节课你有那些收获 2。还有哪些困惑 3。布置作业:书本作业和
课外练习
当x取下列数值时,不等式1-5x<16是否成立? -4.5, -4,-3,4,2.5,0,-1.
用不等式表示下列数量关系:
(1)x的3倍大于x的2倍与5的差;
(2)y的一半与4的和是负数;
(3)5与a的4倍的差不是正数;
(4)3与x的2倍的和是正数.
3.按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:
(1)m>n,两边都减去3; (2)m>n,两边同乘以3; (3)m>n,两边同乘以-3; (4)m>n,两边同乘以m.
下列各题的横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.
(1)若a-3<9,则 a ______12; (2)若-a<10,则a______ -10;
(3)若0.5a>-2,则a ______-4; (4)若-a>0, 则 a______0。
已知a<0,用>或< 号填空:使不等式成立.并说明是根据哪一条不等式基本性质.
(1)a+2 ______ 2; (2)a-1 ______ -1; (3)3a______ 0;
(4)-3a______ 0; (5)a-1______0; (6)|a|______0.
6. 判断下列各题的推导是否正确?为什么?
因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为-1>-2,所以-a-1>-a-2; (5)因为3>2,所以3a>2a.
照下列条件,写出仍能成立的不等式:
(1)由-2<-1,两边都加-a; (2)由7>5,两边都乘以不为零的-a;
由-3>-4,两边都除以不为零的-a.
8.用不等号填空:
当a-b<0时,a______ b; (2)当a<0,b<0时,ab ______0; (3)当a<0,b>0时,ab ______0; (4)当a>0,b<0时,ab ______ 0; (5)若a ______ 0,b<0, 则ab>0;
9.设a<b,用不等号连接下列各题中的两个代数式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
10.用不等号填空:
(1)若a-b<0,则a ______ b;(2)若b<0,则a+b ______ a; (3)b<a<2,则(a-2)(b-2)______0;(2-a)(2-b)______ ;(2-a)(a-b)______.
5.3 一元一次不等式(1)
〖教学目标〗
◆1、知道什么是一元一次不等式和不等式的解.
◆2、掌握一元一次不等式的解法.
◆3、通过"等与不等"的对比使学生进一步领会对立统一的思想.
〖教学重点与难点〗
◆教学重点:掌握解法步骤并准确地求出解集.并能准确的把解表示在数轴上.
◆教学难点:正确地运用不等式基本性质3.
◆教学关键:一元一次不等式与一元一次方程的解法步骤的区别,等式性质2与不等
式的基本性质的区别
〖教学过程〗
创设情景
1、先复习不等式性质,解一元一次方程的解法。
师:用多媒体教学设备将制好的幻灯片放出:
1、 题组练习:用“>”和“<”填空
(1)2 0;-5 2;-7 -10;
(2)设a>b,则:
a+1 b+1 a-3___b-3 3a 3b -a -b
2、 议论(用幻灯片打出):
(1) 根据不等式的基本性质,说明下列语句对不对:
① 从5 > 4一定能得到5a>4b,
②从 1/3< 1一定能得到 1/3a(2)①甲在不等式-100 < 0的两边都乘以-1,竟得到100<0!它错在哪里?
②乙在不等式2x > 5x的两边都除以x,竟得到2 > 5! 它错在哪里?
生:[由学习小组(4人或6人)讨论后选一代表回答]
3、回忆解一元一次方程的一般步骤并完成练习:
解下列方程,并用数轴表示它的解:
(1)3x=18; (2)5x-3=7x+1 ;
注:由四个学习小组出两名同学自选一题上黑板演算,并对挑选较难题的同学进行激励评价。
4、Ⅰ将方程中的等号改写为不等号引入概念:
(1)3x<18 ; (2)5x-3≥7x+1;
提出问题:对比一元一次方程的定义,给这两个式子起一个名字。
给出定义:只含有一个未知数, 未知数的次数是1 的不等式叫做一元一次不等式。
5、引出课题:我们今天就是来探讨一元一次不等式的解法(板书:一元一次不等式的解法1)
新课教学
1想一想:把x=8代入不等式3x<18,不等式成立吗?能否因此就说不等式的解是x=8?
生:不是,还有很多。
师:哦,原来还有很多很多的解哦!那请同学们帮老师把他们在数轴上指出来(师画数轴,叫一学生上来指出)
2、得出:不等式解的概念:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。
3老师讲述怎样用数轴表示不等式解的方法(强调等号取于不取的不同之处)
4、试一试解下列不等式,并把解表示在数轴上;
(1)3x<18 ; (2)5x-3≥7x+1 ;
师:(1)解不等式就是利用不等式的基本性质,把要求解的不等式变形“x解:(1) x< 9
(2)两边同加上-7x,再在不等式两边同加上3得: 5x-7x≥1+3
合并同类项得:-2x≥4
两边同除以-2得:x≤-2(注意学生改写时,不要把不等号的方向弄错)
师:(2)解方程的移项法则对解不等式是否仍然适用?若适用,它的根据是什么
三、;练一练
1解下列不等式,并把解表示在数轴上;
(1)1-x>2;(2)5x-4>4-3x;(3)--x≤1;(4)6x-1< 9x-4
2、解不等式2.5x-4< x-1,把解表示在数轴上,并求出适合不等式的正整数解。
四、小结
1、让学生来总结:这节课你们有什么收获。
2、需要特别注意什么?
(如果乘数或除数是负数,要把不等号方向改变,即必须特别注意不等式基本性质
五、巩固新知,体验成功。
作业题1、2(110页)
六、布置作业
作业题3、4、5、6
作业本
思考:解不等式(1)3(1-X)<2(X+9) ; (2)(2+X)÷2≥(2X-1)÷3 .
七、结束语:
同学们这节课学得很好,相信你们课后能很轻松地完成作业!
5.3 一元一次不等式(2)
〖教学目标〗
◆1、掌握解一元一次不等式的一般步骤.
◆2、会运用解一元一次不等式的一般步骤解一元一次不等式.
〖教学重点与难点〗
◆教学重点:运用解一元一次不等式的一般步骤解一元一次不等式.
◆教学难点:例2步骤较多,容易发生错误,是本节教学的难点.
〖教学过程〗
一、复习旧知,引入新课:
1、不等式的三个基本性质。
2、一元一次不等式的概念。
3、不等式的解的概念。
二、合作交流,探求新知:
1、合作学习,根据已学过的知识,你能解下列一元一次不等式吗?
(1)5x>3(x-2)+2 (2)2m-3<(7m+3)/2
2、解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:
步骤 根据
1 去分母 不等式的基本性质3
2 去括号 单项式乘以多项式法则
3 移项 不等式的基本性质2
4 合并同类项,得ax>b,或ax5 两边同除以a(或乘1/a) 不等式的基本性质3
3、例1、解不等式3(1-x)>2(1-2x)
解: 去括号,得 3-3x>2-4x
移项,得 -3x+4x>2-3
合并同类项,得 x>-1
4、例2、 解不等式(1+x)/2≤(1+2x)/3+1
解: 去分母,得 3(1+x)≤2(1+2x)+6
去括号,得 3+3x≤2+4x+6
移项,得 3x-4x≤2+6-3
合并同类项,得 -x≤5
两边同除以-1,得 x≥-5
注:1、五个步骤要求当堂背出,同桌之间可以互相核对。
2、要求作业严格按照上述步骤进行。
三、课内练习
解下列不等式,并把解在数轴上表示出来:
(1)5x-3<1-3x
(2)3(1-3x)-2(4-2x) ≤0
(3)(2x-1)/4-(1+x)/6≥1
四、小结:1、解一元一次不等式的基本步骤。
2、不等式的解在数轴上的表示方法。
五、作业:1、作业本
2、每课一练
5.3 一元一次不等式(3)
〖教学目标〗
◆1、会根据具体问题中的数量关系列一元一次不等式.
◆2、会利用一元一次不等式解决简单实际问题.
〖教学重点与难点〗
◆教学重点:利用一元一次不等式解决简单实际问题.
◆教学难点:范例含较多的量,思路较复杂,学生不易理解,所以是本节课.
〖课前准备〗学生课前进行预习,教师做多媒体课件
〖教学过程〗
复习
复习:1、解一元一次不等式的步骤是怎样的?
2、问题解决的四个步骤又是怎样的?(多媒体显示,加强学生的印象)
二、新课教学
1、合作学习
宾馆里一座电梯的最大限载量为1000千克。两名宾馆服务员要用电梯把一批重物从底层搬到顶层,这两名服务员的身体质量分别为60千克和80千克,货物每箱的质量为50千克,问他们每次最多只能搬运重物多少箱?
教师问:
(1)这道题目应选择哪种数学模型?能用方程来解吗?还是别的数学模型呢?
(2)问题中有哪些相等的数量关系和不等的数量关系?
(要求学生分组进行讨论,然后分组发表各自的意见)
教师总结:用一元一次不等式可以刻画和解决很多实际生活中的有关数量不等关系的问题,处理这类问题一般也可以按照问题解决的四个基本步骤来帮助思考和求解。(多媒体显示本题的相等和不等的数量关系)
2、例题教学
例:有家庭工厂投资2万元购进一台机器,生产某种商品。这种商品每个的成本是3元,出售价是5元,应付的税款和其他费用是销售收入的10%。问至少需要生产、销售多少个这种商品,才能使所获利润(毛利润减去税款和其他费用)超过投资购买机器的费用?
教师先引导学生理解题意后分析:(1)先从所求出发考虑问题,至少需要生产、销售多少个商品使所获利润>购买机器款。(2)提出怎样计算“所获利润”的问题,每生产、销售一个这种商品的利润是多少元?生产、销售x个这种商品的利润是多少?这样我们只要设生产、销售这种商品x个就可以了。
教师板书解题过程,对最后的答案进行说明。
课堂巩固练习:书中P114 课内练习。
师生小结:列一元一次不等式解实际问题按照问题解决的四个基本步骤来思考和求解,关键是找出题目中的相等的数量关系和不等的数量关系。
布置作业:1、作业本(1)P26
2、书上P114作业题。
5.4 一元一次不等式组(1)
〖教学目标〗
◆1、理解一元一次不等式组的概念.
◆2、理解不等式组的解的概念.
◆3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.
◆4、培养学生类比推理能力.
〖教学重点与难点〗
◆教学重点:一元一次不等式组的解法.
◆教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。
〖教学过程〗
一.引入
1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?
2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。
3.最后教师总结两个不等式。
如设购买圆珠笔的桶数为X,则 :
二.新课
1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再
例如:
都是一元一次不等式组.
2. 不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.
3.做一做:
例1.解一元一次不等式组
解:解不等式①, 得: X>-1
解不等式②, 得: X≤6
把 ① ②两个不等式的解表示在数轴上,如下图:
-1 0 6
所以原不等式组的解是-14.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗
若a用数轴试一试.
(1) (2) (3) (4)
(设a一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表
一元一次不等式组 解集 图示 口诀
x>ax>b x>b 大大取大
xx>axxb 无解 比小小,比大大,解不了(无解)
5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:
(1) (2)
(3) (4)
6.探索较复杂的不等式组的解法:
例2. 解一元一次不等式组
解:由不等式①,去扩号得 3-5X>X-4X+2
移项,整理得 -2X>-1
所以X<
解不等式②,去分母得 3X-2>10-2X
移项,整理得 5X>12
所以X>
把①,②两个不等式的解表示在数轴上.
0 1 2 3
所以原不等式组无解.
7.通过范例,帮助学生总结解一元一次不等式组的步骤:
(1)依次解各个一元一次不等式.
(2)把各个一元一次不等式的解分别表示在同一数轴上.
(3)根据解在数轴上的表示确定不等式组的解.
三.巩固
(学生活动,与同伴交流自己的问题和解决问题的过程)
1. 解下列一元一次不等式组:
(1) (2) 2. 分别求出本节开头问题中购买墨水笔和圆珠笔的桶数
四.归纳
1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;
2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。
五.作业
见作业题:第1—4题。
5.4 一元一次不等式组(2)
〖教学目标〗
◆1、会列一元一次不等式组应用题.
◆2、探索一元一次不等式组在解决实际问题中的应用.
〖教学重点与难点〗
◆教学重点:列一元一次不等式组解应用题.
◆教学难点:例2的数量关系比较复杂,并涉及求整数解,是本节教学的难点.
〖教学过程〗
创设情景,引入新课:
如图,已知每个砝码的质量为1克,请你估计物体A的质量.
我们可以得到:x>2
x<3
从而得:2<x<3,由此题引出课题.
合作交流,探求新知:
例1、小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地.猜猜小宝的体重约有多少千克?(精确到1千克)
分析:从跷跷板的两种状况可以得到的关系:
妈妈的体重+小宝的体重 < 爸爸的体重
妈妈的体重+小宝的体重+6千克 > 爸爸的体重
解略.
概括用一元一次不等式组解应用题的一般步骤
(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系
(2)设:设适当的未知数
(3)找:找出题目中的所有不等关系
(4)列:列不等式组
(5)解:求出不等式组的解集
(6)答:写出符合题意的答案
例2.某工厂用如图(见课本第118页)所示的长方形和正方形纸板,糊横式和竖式两种无盖的长方形包装盒,如图,现有长方形纸板351张,正方形纸板151张,要糊的两种包装盒的总数为100个.若按两种包装盒的生产个数分,问有几种生产方案?如果从原材料的利用率考虑,你认为应选择哪一钟方案?
分析:和列方程解应用题一样,当数量关系比较复杂时,我们可以通过列表来分析:
横式无盖的长方体x个 竖式无盖的长方体(100-x)个 合计(张) 现有纸板(张)
长方形纸板(张) 3x 4(100-x) 3x+4(100-x) 351
正方形纸板(张) 2x 100-x 2x+100-x 151
解:设生产横式无盖的长方体包装盒x个,则生产竖式无盖的长方体包装盒(100-x)
个,由题意得
3x+4(100-x)≤351
2x+100-x≤151
化简,得 400-x≤351
100+x≤151
解这个不等式组,得49≤x≤51
因为x是整数,所以x1=49,x2=50,x3=51.
当x1=49时,400-x1=351,100+x1=149,长方形纸板恰好用完,正方形纸板剩2张.
当x2=50时,400-x2=350,100+x2=150, 长方形,正方形纸板各剩1张.
当x3=51时,400-x3=349,100+x3=151, 长方形纸板剩2张,正方形纸板恰好用完.
由于长方形纸板的面积大于正方形纸板的面积,所以当x1=49时,原材料的利用率最高.
答:一共有三种生产方案:①横式的包装盒生产49个,竖式的包装盒生产51个;②横式的包装盒 ,竖式的包装盒各生产51个;③横式的包装盒生产51个,竖式的包装盒生产49个.
学生练习并讲评:第120页课内练习.
知识拓展应用:
问题1:我属兔,请你根据我的实际情况来猜测我的年龄?
分析:1. 属兔的年龄有可能是以下数据: 6 18 30 42 54 ……
2.根据实际情况可知:
20< 老师的年龄<40,又知老师属兔,所以老师的年龄是30岁.
问题2:某公园售出一次性使用门票,每张10元.为吸引更多游客,新近推出购买“个人年票”的售票方法(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.你能知道某游客一年中进入该公园至少超过多少次时,购买A类年票最合算吗
分析1.游客购买门票有几种选择方式
2.设某游客选择了某种门票,一年中进入该公园x次,其门票费支出是多少
3.要使购买A类年票最合算,各种门票支出应当满足什么关系
想一想: 1.什么情况下,购买每次10元的门票最合算
2.什么情况下,购买B类年票最合算
小结与作业
1.本节课有哪些收获和感受?
2.课本作业题,作业本.
图5-1
40
8g
2g
5g
8g
5g
2g
2g
2g
也可用平移变换思想解决这个问题。
等式的两边都加上(或减去)同一个等式,结果仍然是等式。
等式
不等式
两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式。
两边都乘以(或除以)同一个正数,不等号的方向不变。
两边都乘以(或除以)同一个负数,不等号的方向改变。
设物体A的质量为x克,每个砝码的质量为1克3.1 认识直棱柱
〖设计思路〗
人们生活的空间存在着大量的图形,图形是人们理解自然界和社会现象的绝妙工具,立体图形的学习将使学生能更好地适应生活的空间,同时也给他们带来无穷的直觉源泉。
发展学生的空间观念是学习立体图形的核心目标。而“能由实物的形状想像出几何图形,由几何图形想像出实物的形状”是空间观念的重要方面。同时,学生根据已有的生活背景和初步的数学活动经验,从观察生活中的物体开始,通过观察、操作、想像、讨论、交流、推理等大量数学活动,逐步形成自己对空间与图形的认识,促进观察、分析、归纳、概括等一般能力的发展。
〖教材分析〗
教材从生活中常见的立体图形入手,让学生在丰富的现实情境中,认识常见几何及点、线、面的一些性质,在主动探究中,体会点、线、面是构成图形的基本元素,从构成图形的 基本元素的角度进一步认识常见几何体的某些特征。
〖教学目标〗
◆1、了解多面体、直棱柱的有关概念.
◆2、会认直棱柱的侧棱、侧面、底面.
◆3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
〖教学重点与难点〗
◆教学重点:直棱柱的有关概念.
◆教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
〖教学准备〗 每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型
〖教学过程〗
一、创设情景,引入新课
师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?
析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点。
2. 合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱,直棱柱有以下特征:有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;侧面都是长方形含正方形。长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”析:由第(3)小题可以得到:直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)最后完成例题中的“想一想”
5.巩固练习(学生练习)完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
四、作业布置
课本作业本
3.2直棱柱的表面展开图
教学目标
1.了解直棱柱的表面展开图的概念
2.会在简单的情况下判断一个平面图形的不是进棱柱的表面展开图,培养学生的空间想像能力3、会画简单的直棱柱的表面展开图
4.能根据展开图判断和制作立体模型
重点与难点
本节教学的重点是会认和画直棱柱的表面展开图
本节教学的难点是表面展开图的辨认。
教学准备
每个学生准备一个立方体纸盒子 ,分小组学习。
教学过程
一、创设情景,导入新课
师:有一个由铁丝折成的立方体框,立方体的边长为了2cm,在框的4处有一只蚂蚁,在B处有一粒糖,蚂蚁想吃到糖,所走的最短路程是多少cm
析:学生很容易解决本题目,4cm,有2条路线。
师:其他条件不变,把B处的糖换成C处,又该如何?
师:那将立方体铁丝框改成立方体纸盒,上述两题结论又该如何?
二、合作交流,探求新知
1.形成概念
师:请同学们将事物准备好的立方体纸盒,沿某些棱剪开,
且使六个面连在一起,然后铺平,你能得到怎样的图形,
请同学们展示一下?
析:请4位学生出示,最好有意挑选4个不同展开图作为样本,
然后给出立方体的表面展开图的定义,将立方体沿某些棱剪开后铺平,且六个面连在一起,这样的图形叫立方体的表面展开图。
2.合作交流
师:以学习小组为单位,得出一个立方体的表面展开图,
共有几种这样情况?
析:学生交流后,请学习小组代表总结本组情况,
老师对各种情况进行总结,对不能得出的情况作演示
,并总结出11种情况。
师:1、立方体相对两个面在其展开图中的位置有何关系? 2、立方体的几种展开图有何关系?
3.反馈巩固
自学例1。然后完成“做一做”
析:有了以上的11种情况的小结,例1和做一做就能轻易的解决。
4.学以致用
出示例2,先请学生单独考虑,再作讲解。
5.巩固提高
完成课本上的课内练习。
6.解决引入问题。
析:只要将1平面和3平面展开,根据两点之间线段最短,可知从A到B的最短路程就是线段AB=√8cm.,则从A点到C点的最短路程就是线段AC=√20 cm,本题还可以变换A,B,C的位置,从而使学生达到熟练的程度。
三、小结回顾,反思提高
师:本节课你有什么收获?
合作交流后得:1、立方体的表面展开图的11种情况。2、立方体相对两个面在展开图中的位置关系;3、立方体的11种展开图的联系。
四、作业布置
见作业本本节内容
3.3 三视图
〖教学目标〗
◆1、感受从不同方向观察同一物体可能看到不一样的结果,培养学生全面观察的能力.
◆2、能认别简单物体的三视图,了解主视图、俯视图、左视图和三视图的概念.
◆3、了解各个视图之间的尺寸关系;长对正、高平齐、宽相等.
◆4、会画直棱柱等简单几何体的三视图.
〖教学重点与难点〗
◆教学重点:三视图的画法.
◆教学难点:例2的组合体较复杂,画三视图有一定的难度.
〖教学准备〗
◆1、多媒体;◆2、水瓶、杯子、乒乓球;
◆3、每位同学准备7个小正方体,一个圆锥,一个长方体
〖教学过程〗
一、创设问题情境。
从学生熟悉的古诗入手,引出课题。
大家看(屏幕投影庐山彩照)
师:横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
多美的山,多美的诗!哪位同学能说说苏东坡是怎样观察庐山的吗?这首诗教会了我们怎样观察物体(横看、侧看、近看、身处山中看)。这也是我们这节课将要学习的内容——从不同方向看
(二)购买房子时,总是拿一幅房子的平面图,从房子的平面图就可以知道房子的结构,从而决定是否买房(在投影屏幕上给出图);家庭在装修时先请设计工程师先画出家具的图纸,这些事情都说明现实生活、生产中离不开图形(立体与平面),而空间物体的立体图形需要通过平面图形从不同角度去刻画,这些都是我们今后数学课中要学习的。
二、观察实物,利用小实验,使学生初步体会从不同方向观察同一物体,可能看到不一样的结果。实验示意图(水瓶、杯子、乒乓球先用布盖好)
老师需要三位同学帮忙,哪位同学乐意?
让三位学生分别按以上位置站好后,老师掀开盖布:
师问甲同学:请告诉同学们,你看到桌子上摆放着什么? (水瓶、乒乓球)
师:乙同学呢?你又看到什么?(水瓶、水杯)
师对丙同学:你来说说,桌子上摆着什么东西? (水瓶、杯子、乒乓球)
师:为什么这三位同学说的都不一样,是不是有哪位同学说错了?请同学们想一想。
三位同学都没有说错,只因为他们站的位置不同。再看下面一幅图,大家明白了:即从不同方向看,所以看的结果不同。
三、新课
(一)观察几个简单几何体的组合,讨论得出“观察同一物体时,可能看到不同的图形”的结论。将课前图(注:图在后面)内容打在投影屏幕上,让学生自主研究给出的四幅图分别从什么方向看到的?(让学生体会到从前、后、左、右、上五个方向能看到各个方向上物体的图形,思考若减少几个方向能不能完整地认识物体)。实际上在机械制图时的要求,只要从正面、上面、左边就可以完整确切地表达物体的形状和大小。
是不是同一物体从不同方向看结果一定不一样呢?练习P64做一做1
(二)三视图及其画法
1、由上面的讲解,体会到从不同的方向看同一物体时可能看到不同的图形,其中从正面看到的图形叫主视图,从左面看到的图形叫左视图,从上面看到的图形叫俯视图。主视图、左视图、俯视图合称三视图。
在生活和生产实践中,我们也经常需要运用三视图来描述物体的形状和大小。如图所示的热水瓶的三视图。(注:图在后面)
(讨论)下面是由7块小正方体木块堆成的物体,从三个方向看到图形如下,请同学们说出哪一个是主视图?哪一个是左视图?哪一个是俯视图?
2、学生默读理解课本P64上第一、二段。
“长对正、高平齐、宽相等”是画三视图必须遵循的法则。
例1 一个长方体 的立体图如图所示,请画出它的三视图。
(合作学习)请同学们画出下列物体的三视图,并由各小组选出代表展示结果,并请全班同学参加评价。
(独立自主)让每一个同学自己用5块正方体搭成几何体,然后画出所搭几何体的三视图,并请同学思考搭的方法是不是惟一的?小组讨论,进行交流。
四、练习P65课内练习1、2
五、小结
1、这节课我们主要学习了什么知识?
(1)从不同方向观察同一物体时,可能看到不同的图形。
(2)画简单几何体的三视图。
2、给了我们什么启示?
这节课我们研究的都是从不同方向观察物体,对人、对事呢?
从不同方向观察同一物体时,可能看到不同的图形,从不同角度分析同一件事或同一个人,结果可能也不一样。我作为一个老师,也会全面地评价每一个学生,同时希望同学们今后看物、看人、看事从多角度、多方向分析,这样,我们就会发现许多美好的、闪光的东西,从而感受生活是多么的美好。
六、作业见作业本(1)
3.4 由三视图描述几何体
〖教学目标〗
◆1、会根据俯视图画出一个几何体的主视图和左视图.
◆2、体会立体图形的平面视图效果,并会根据三视图还原立体图形.
◆3、让学生体验数、符号和图形是有效地描述现实世界的重要手段,从而获取立体图形的实感,逐步培养学生的空间想象能力.
〖教学重点与难点〗
◆教学重点:根据三视图描述基本几何体.
◆教学难点:根据三视图描述实物原形.
〖教学过程〗(先复习前一节“三视图”)
创设情景,激发兴趣
让学生拿出准备好的六个小正方体,搭一个几何体,然后让学生画出几何体的俯视图,并选择一位学生上台演示并在黑板上画出俯视图(如下图),教师在正方体上标上数字并说明数字含义。
问:能不能根据上面的俯视图画出这个几何体的主视图和左视图?
看哪些同学速度快。
合作交流,分类指导
1、思路一:根据俯视图先摆出这个几何体,再根据实物图画出它的主视图和左视图。还有其它的方法吗?
2、学生观察俯视图与画出的主视图、左视图,问:你们发现了什么?小组交流讨论
3、引导:让多个学生在黑板上根据其俯视图画出主视图和左视图,然后观察列的数量及每列的方块个数与俯视图、俯视图上数字的关系。得出思路二:根据俯视图确定主视图、左视图的列数;根据数字确定每列方块的个数。即根据俯视图确定主视图有3列,自左向右分别由1、2、1块组成;左视图有2列,自后向前分别由2、2块组成,如图所示:
主视图 左视图
1)、实际操作验证上面的思路二
2)、延伸:用小方块搭一个几何体,使得它的主视图和俯视图如图所示;
请你摆一摆,你会发现些什么?
学习方法:组内活动——组间交流——展示成果——小结
问:这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?
小结:不只一种,最少需要10个小立方块,即俯视图中的个数加上主视图中上两层的个数(7+3=10),最多需要16个小立方块,即对应列乘积之和(3×3+2×3+1×1=16)
合作学习 你能从下面所给的三视图中推断出它们分别表示什么几何体吗?
(1) (2)
解:(1)该立体图形是底面是菱形的直四棱柱,
(2)是直五棱柱
(3)是长方体上面放有一个球体
例题讲解:已知一个几何体的三视图如图(左)所示,描述该几何体的形状,量出三视图的有关尺寸,并根据已知的比例求出它的侧面积(精确到0.1cm2)。
分析:由主视图和左视图知道,这个几何体是直棱柱,但不能确定棱的条数。再由俯视图可以确定它是直四棱柱,且底面是梯形如图(右)。它的四个侧面都是长方形鼓侧面积容易求出。
学习反馈,逐步提高
1、由三视图还原某物体
主视图、左视图和俯视图都是相等的正方形,该物体是 ;
主视图、左视图和俯视图都是相等的圆,该物体是 ;主视图、左视图都是相等的长方形,俯视图是圆,则该物体是
2、
教材第69页练习1、2
3、探究活动69页
用6个同样大小的小立方块搭一个几何体,使它的俯视图如图形那样。
则一共有几种不同形状的搭法?你能用三视图表示你探究的结果吗?
分小组请同学们拿出橡皮泥做出6个正方形来“搭一搭”就清楚了(学生动手做),
会搭出不同结果。
师:在平面图形还原到立体图形的探究过程中,同学们学到了哪些知识?
1.通过学习我认为,今后观察事物要做到全面、细致,不然就成了“盲人摸象”。
2.生活中的有些现象可能是多种原因造成的,因此遇到问题要多动动脑筋。比如,这个问题我就没有想到有这么多种情况。
3:解决问题不仅要动脑筋,而且还要动手去实践,实践才能出真知。
疑反思,总结经验
能根据主视图画出左视图和俯视图吗?
通过本节课的学习,给了我们什么启示?
在探究的过程中学生应根据自己的实际情况学习,可先动手,后思考;也可先想像,再动手。但重要的是发扬团队精神,这样才能做到积思广益。
作业
见作业本
A
B
C
2
1
5
4
6
3
1
3
B
A
C
人
人
仍
人丙
人甲
人乙
左
俯
主
主
俯
左
2
1
1
2
俯视图
主视图
(3)
6cm
4.5cm
9cm
3cm
比例1:3
左图 右图同位角 内错角 同旁内角
〖教学目标〗
◆1、了解同位角、内错角、同旁内角的意义。
◆2、会在简单的图形中辨认同位角、内错角、同旁内角。
◆3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。
〖教学重点与难点〗
◆教学重点:同位角、内错角、同旁内角的概念。
◆教学难点:各对关系角的辨认,复杂图形的辨认是本节教学的难点。
〖教学过程〗
(三)教学过程:
引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。
这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。
二.让我们接受新的挑战:
------讨论:两条直线和第三条直线相交的关系
如图:两条直线a1 , a2和第三条直线a3相交。
(或者说:直线 a1 , a2 被直线 a3 所截。))
其中直线 a1 与直线 a3 相交构成四个角,直线 a2 与直线 a3 相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。
三.让我们来了解 “三线八角”:
如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。
1. 观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
答: 有。 ∠2与∠6; ∠4与∠8; ∠3与∠7
2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
答: 有。 ∠2与∠8
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。
答: 有。 ∠3与∠8
四. 知识整理(反思):
问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?
确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角
问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?
结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
五.试试你的身手:
例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)
答: ∠1与∠5; ∠4与∠6; ∠1与∠A; ∠5与∠A
合作学习:请找出以上各对关系角成立时的其余各对关系角。
1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
2.其中: ∠1与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
3.其中: ∠5与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
六.让我们自己来试一试 :(练习)
1.看图填空:
(1)若ED,BC被AB所截,则∠1与 是同位角。
(2)若ED,BC被AF所截,则∠3与 是内错角。
(3)∠1 与∠3是AB和AF被 所截构成的 角。
(4)∠2与∠4是 和 被BC所截构成的 角。
2. 如图:直线AB、CD 被直线 AC 所截,所产生的内错角是 。
如图:直线AD、BC 被直线 DC 所截,产生了 角,它们是 。
七.让我们步步登高:
例2:如图:直线DE交∠ABC的边BA于F。如果内错角∠1与∠2相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由。
八.回顾这节课,你觉得下面的内容掌握了吗?或者说你注意到了吗?
1. 如何确定“三线”构成的“八角”。(注意“一个前提”)
2. 如何根据“关系角”确定“三线”。(注意找“前提”)
3. 要注意数学中的“分类思想”应用,养成良好的思维习惯。
4. 你有没有养成解题后“反思”的习惯。
九.课后练习:(家庭作业)
1.复习本节课的内容。
2.完成本节课后的习题。
3.预习下节课的知识。
平行线的判定(1)
〖教学目标〗
◆1、理解平行线的判定方法1:同位角相等,两直线平行;
◆2、学会用“同位角相等,两直线平行”进行简单的几何推理;
◆3、体会用实验的方法得出几何性质(规律)的重要性与合理性.
〖教学重点与难点〗
◆教学重点:是“同位角相等,两直线平行”的判定方法.
◆教学难点:是例1的推理过程的正确表达.
〖教学过程〗
合作动手实验引入
复习画两条平行线的方法:
提问:(1)怎样用语言叙述上面的图形?
(直线l1,l2被AB所截)
(2)画图过程中,什么角始终保持相等?
(同位角相等,即∠1=∠2)
(3)直线l1,l2位置关系如何?
( l1∥l2)
(4)可以叙述为:
∵∠1=∠2
∴l1∥l2 ( ? )
平行线的判定方法1:
由上面,同学们你能发现判定两直线平行的方法吗?
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两
条直线平行。简单地说:同位角相等,两直线平行。
几何叙述:∵∠1=∠2
∴l1∥l2 (同位角相等,两直线平行)
课堂练习:
4.画图练习:
P6 课内练习1、3
P6 作业题1
5. 例1 P6
已知直线l1,l2被l3所截,如图,∠1=45°,
∠2=135°,试判断l1与l2是否平行.并说明理由.
解:l1 ∥ l2
理由如下:
∵ ∠2+∠3=180°,∠2=135°
∴∠3=180°-∠2=180°-135°=45°
∵∠1=45°
∴∠1=∠3
∴l1∥l2(同位角相等,两直线平行)
思路:(1)判定平行线方法.
(2)图中有无同位角(注∠3位置)
(3)能说明∠3=∠1吗?
(4)结论.
(5)∠3还可以是其它位置吗?你能说明l1∥l2吗?
6.练习:P7 作业题3
作业题2
作业题4
对于2、4你有不同的方法吗?
7.小结与反思:
你学到了什么?
你认为还有什么不懂的?
你有什么经验与收获让同学们共享呢?
8.布置作业.
见作业本
平行线的判定(2)
〖教学目标〗
◆1、使学生掌握平行线的第二、三个判定方法.
◆2、能运用所学过的平行线的判定方法,进行简单的推理和计算.
◆3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法.
〖教学重点与难点〗
◆教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用.
◆教学难点:问题的思考和推理过程是难点.
〖教学过程〗
一、从学生原有认知结构提出问题
如图,问平行的条件是什么
在学生回答的基础上再问:三线八角分为三类角,
当同位角相等时,两直线平行,
那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢 这就是我们今天要学习的问题.(板书课题)
学生会跃跃欲试,动脑思考.
教师引导学生:将内错角或同旁内角设法转化为利用同位角相等.
二、运用特殊和一般的关系,发现新的判定方法
1.通过合作学习,提出猜想.
①若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?
你可以从以下几个方面考虑:
⑴我们已经有怎样的判定两直线平行的方法?
⑵有∠3=∠4,能得出有一对同位角相等吗?
由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二:
两条直线被第三条直线所截,如果内错角相等,则两条直线平行.
教师并强调几何语言的表述方法
∵∠3=∠4
∴AB∥CD(内错角相等,两条直线平行)
然后,完成“做一做”
∠1=121°, ∠2=120°,∠3=120°。
说出其中的平行线,并说明理由。
②若图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行吗?
你可以由类似的方法得到正确的结论吗?
由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三:
两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行.
教师并强调几何语言的表述方法
∵∠2+∠4=180°
∴AB∥CD(同旁内角互补,两条直线平行)
当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行.
2.例题教学,体验新知
例2.如图,∠C+∠A=∠AEC。判断AB与CD是否平行,并说明理由。
分析:延长CE,交AB于点F,则直线CD,AB被直线CF所截。这样,
我们可以通过判断内错角∠C和∠AFC是否相等,来判定AB与CD是否平行。
板书解答过程。
提问:能否用不一样的方法来判定AB与CD是否平行?
提示:连结AC。
如图∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,
那么AB∥CD ,AD∥BC.请说明理由。
先让学生思考,以小组为单位进行讨论,然后派出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程
三、应用举例,变式练习(讲与练结合方式进行教学)
1、课内练习1、2
2、如图
⑴∠1=∠A,则GC∥AB,依据是 ;
⑵∠3=∠B,则EF∥AB,依据是 ;
⑶∠2+∠A=180°,则DC∥AB,依据是 ;
⑷∠1=∠4,则GC∥EF,依据是 ;
⑸∠C+∠B=180°,则GC∥AB,依据是 ;
⑹∠4=∠A,则EF∥AB,依据是 ;
3、探究活动:有一条纸带如图所示,如果工具只有圆规,
怎样检验纸带的两条边沿是否平行?如果没有工具呢?
请说出你的方法和依据。
提示:可尝试用折叠的方法,与你的同伴交流。
四、小结
1.先由教师问学生:到目前为止学习了哪些判定两直线平行的方法 在选择方法时应注意什么问题
2.在学生回答的基础上,教师总结指出:
(1)学习了3种判定方法.
(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法.
(3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择.
五、作业
选用课本题.
1.3 平行线的性质(1)
一、素质教育目标
(一)知识教学点
1.理解:平行线的性质与平行线的判定是相反问题.
2.掌握:平行线的性质.
3.应用:会用平行线的性质进行推理和计算.
(二)能力训练点
1.通过画平行线、度量角培养学生实际操作能力(即画图测量的能力).
2.通过平行线性质定理的推导,培养学生的观察分析和进行简单的逻辑推理能力.
(三)德育渗透点
通过学习平行线的性质与判定的联系与区别,培养学生事物是普遍联系又是相互区别的辩证唯物主义思想.
二、教学重点、难点与疑点
(一)重点
平行线的性质公理及平行线性质定理的推理.
(二)难点
平行线性质与判定的区别及推理过程.
(三)疑点
平行线的性质与判定的互逆关系.
三、教学方法
采用尝试指导,引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
四、教具准备
投影仪、三角板、自制投影片.
五、教学步骤
(一)创设情境,复习导入
师:上节课我们学行线的判定,回忆所学内容看下面的问题.(出示投影片1)
1.如图2-58,
(1)∵∠1______∠2(已知),∴a∥b( )
(2)∵∠2______∠3(已知),∴a∥b( )
(3)∵∠2+∠4=______(已知),∴a∥b( )
2.如图2-59,(1)已知∠1=∠2,则∠2与∠3有什么关系?为什么?
(2)已知∠1=∠2,则∠2与∠4有什么关系?为什么?
3.如图2-60,一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是142°,第二次拐的角∠C是多少度?
学生活动:学生口答第1、2两题.
师:第3题是一个实际问题,要给出∠C的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:
[板书] 平行线的性质(1)
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于实际生活,又服务于生活.
(二)探索新知、讲授新课
师:我们都知道平行线的画法,请同学们画出直线AB的平行线CD,结合画图过程思考画出的平行线,已有一对同位角的关系是怎样的?
学生活动:学生在练习本上画图并思考.
学生画图的同时教师在黑板上画出图形(见图2-61),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后迅速地答出已有一对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线E′F′,使它截平行线AB与CD,得同位角∠3、∠4,利用量角器量一下,∠3与∠4有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书] 两条平行线被第三条直线所截,同位角相等.
简单说成,两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图2-62的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同旁内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
教师根据学生回答,给予肯定或指正的同时板书.
[板书] ∵a∥b(已知),∴∠1=∠2(两条直线平行,同位角相等)
∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,给出板书:
[板书] 两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等
师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.
师生共同订正推导过程和第三条性质,形成正确板书.
[板书] ∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)
∵∠1+∠4=180°(邻补角定义)
∴∠2+∠4=180°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b(已知见图2-63),∴∠1=∠2(两直线平行,同位角相等).∵a∥b(已知),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(已知),∴∠2+∠4=180°.(两直线平行,同旁内角互补)(板书在三条性质对应位置上)
(三)尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习:(出示投影片2)
如图2-64:已知平行线AB、CD被直线AE所截(1)从∠1=110°,可以知道∠2是多少度?为什么?(2)从∠1=110°,可以知道∠3是多少度?为什么?(3)从∠1=110°,可以知道∠4是多少度,为什么?
【教法说明】练习目的是巩固平行线的三条性质.
(四)变式训练,培养能力
完成练习后<出示投影片3>
例图2-65是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.
【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找∠B和∠C的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修正学生的板演过程,可形成下面的板书.
[板书] 解:∵AD∥BC(梯形定义),∴∠A+∠B=180°.∠C+∠D=180°(两直线平行,同旁内角互补),∴∠B=180°-∠A=180°-115°=65°.∴∠C=180°-∠D=180°-100°=80°.
变式练习:<出示投影片4>
1.如图2-66,已知直线DE经过点A,DE∥BC,∠B=44°,∠C=57°
(1)∠DAB等于多少度?为什么?
(2)∠EAC等于多少度?为什么?
(3)∠BAC、∠BAC+∠B+∠C各等于多少度?
2.如图 2-67,A、B、C、D在直线上,AD∥EF.
(1)∠E=78°时,∠1、∠2各等于多少度?为什么?
(2)∠F=58°时,∠3、∠4各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式.
【教学说明】题目中的为什么,可以用语言叙述,为了培养学生逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不唯一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.
(五)归纳总结
(出示投影片1第1题和投影片5)完成并比较.
如图2-68,
(1)∵a∥b(已知),∴∠1____ ____∠2( )
(2)∵ a∥b (已知),∴∠2____ ____∠3( )
(3)∵a∥b(已知),
∴∠2+∠4=______( )
学生活动:学生回答上述题目的同时,进行观察比较.
师:它们有什么不同,同学们可以相互讨论一下.
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.
【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.
巩固练习(出示投影片7)
1.如图2-69,已知D是AB上的一点,E是AC上的一点,∠ADE=60°,∠B=60°,∠AED=40°
(1)DE和BC平行吗?为什么?
(2)∠C是多少度?为什么?
学生活动:学生思考、口答.
【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.达到清楚什么条件时用判定,什么条件时用性质,真正理解、掌握并应用于解决问题.
六、布置作业
七、板书设计
1.3 平行线的性质(2)
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、1.合作学习:
如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?
思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2.你发现平行线还有哪些性质?
平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
3.做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2= ( )
∠3= -∠1= ( )
4.例3 如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?
解:∠1=∠2
∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)
∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5.练一练:(P.14课内练习1、2)
6.例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。∠CBD与∠D相等吗?请说明理由。
思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
解:∠D=∠CBD
∵∠ABC+∠C=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
∴∠D=∠ABD(两直线平行,内错角相等)
∵BD平分∠ABC(已知)
∴∠CBD=∠ABD=∠D
想一想:是否还有其它方法?(用三角形内角和定理等)
7.练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。
三、拓展
1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由
2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF
四、知识整理:
平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等
3、要注意一题多解
五、布置作业
P.15 作业题及作业本
1.4 平行线之间的距离
〖教学目标〗
◆1、知识目标:理解平行线之间的距离的概念.
◆2、能力目标:能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线.
◆3、情感目标:通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想.
〖教学重点与难点〗
◆教学重点:理解平行线之间的距离的概念,其实就是转化为上学期学过的点到直线的距离问题。
◆教学难点:画到知直线已知距离的平行线是本节的难点.
〖教学过程〗
合作学习
1、请学生回答、思考 复习点到点的距离,点到直线的距离
2、两条平行线之间的距离
①用三角尺一边紧贴直线b;并沿着b移动,观察
三角尺的另一边、条直角边与直线a交点处的刻度,
请学生观察总结;刻度会改变吗?
②在直线a上仅取二点A、C,过A作AB⊥b于B,
过C作CD⊥b于D,测量AB、CD的长度关系
3、由上请学生总结,老师修正得到一个结论:两条平行线中,一条直线上的点到另一条直线的距离处处相等。
4、得到平行线之间的距离:这个距离就是平行线之间的距离,具体地说:两条平行线中,一条直线上的任意一点到另一条直线的距离叫做两条平行线之间的距离
5、请学生测量数学本子中两条平行线之间的距离,边总结方法:①在一条直线上任意取一点A,并过A作另一条直线的垂线段AB ②量出AB的距离
应用举例
例1:如图,在平行四边形ABCD中,测量AB、CD之间,AD、CB之间的距离。
例2:已知直线l,把这条直线平移,使经过平移所得的像与直线l的距离为1.5cm,求作直线l平移后所得的像
解题步骤:
在直线l上任取A,
作AP⊥l
在AP上截取线段AB=1.5cm
过点B作直线l1∥l
教学小结 ①平行线之间的距离的念
② 测量 平行线之间的距离
③画平行线的方法
作业:见书本作业题
1
2
3
E
F
4
A
B
C
D
1
3
2
E
F
G
A
B
C
D
1
3
2
H
E
F
4
A
B
C
D
1
3
2
A
C
D
B
E
F
A
C
D
B
E
D
A
B
C
A
B
F
E
G
D
C
1
2
3
4
A
B
C
D
图1
a
b
A
C
D
B
a
b2.1 等腰三角形
〖教学目标〗
1.使学生了解等腰三角形的有关概念 。
2.通过探索等腰三角形的性质,使学生掌握等腰三角形的轴对称性。
进一步经历观察、实验、推理、交流等活动。
〖教学重点与难点〗
重点:等腰三角形轴对称性质。
难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。
〖教学过程〗
一、复习引入
1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形
△ABC中,如果有两边AB=AC,那么它是等腰三角形。
2.日常生活中,哪些物体具有等腰三角形的形象
二、新课
1.指出△ABC的腰、顶角、底角。
相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。
2.实验。
现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三
角形的大小和形状可以不一样,画出它的顶角平分线AD所在直线把纸片对折,如图(2)所示,你能发现什么现象吗 请你尽可能多的写出结论。
可让学生有充分的时间观察、思考、交流,可能得到的结论:
(1)等腰三角形是轴对称图形
(2)∠B=∠C
(3)BD=CD,AD为底边上的中线。
(4)∠ADB=∠ADC=90°,AD为底边上的高线。
3.结论:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
三、例题精讲
如图3,在△ABC中,AB=AC,D,
E分别是AB,AC上的点,
且AD=AE,AP是△ABC的角平分线,
点D,E关于AP对称吗?
DE与BC平行吗?请说明理由。
本题较难,可先由师生协同分析,
1.将等腰三角形ABC沿顶角平分线折叠时,线段AD与AE能重合吗?为什么?边AB与AC呢?
2.AD与AE重合,AB与AC重合,说明点D与点E,点B与点C分别有怎样的位置关系?
3.轴对称图形有什么性质?由此可推出AP与DE,BC有怎样的位置关系?那么DE与BC呢?
学生口述,教师板书解题过程。
四、练习巩固
P23 练习1、2、
补充:
填空:在△ABC中,AB=AC,D在BC上,
1.如果AD⊥BC,那么∠BAD=∠______,BD=_______
2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______
3.如果BD=CD,那么∠BAD=∠_______,AD⊥______
四、小结
本节课,我们学习了等腰三角形的轴对称性质。大家想一想,怎样用此性质来解决点与点,线与线之间的位置关系?说说你的想法。
五、动手探究
在平面内,分别用3根、5根、6根火柴棒首尾顺次相接,能搭成什么形状的三角形?通过尝试,完成下面表格。7根呢?8根呢?9根呢?你发现了什么规律?
火柴数 3 5 6 7 8 9 …
示意图
形状
六、作业
P24作业题第1、2、3、4、5题。
等腰三角形的性质
〖教学目标〗
◆1、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.
◆2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.
◆3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图.
〖教学重点与难点〗
◆教学重点:本节教学的重点是理解并掌握等腰三角形的性质:等边对等角;三线合一.
◆教学难点:等腰三角形三线合一性质的运用,在解题思路上需要作一些转换,例如例2,是本节教学的难点.
〖教学方法〗可采用学生在任务驱动下的自主学习与教师辅导相结合
〖课前准备〗学生:准备一些等腰三角形,预习本节内容
教师:教学活动材料,多媒体课件
〖教学过程〗
一.创设情境,自然引入
1.温故检测: 叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是 。
[两边相等的三角形叫做等腰三角形。特殊情况是正三角形。对称轴是等腰三角形顶角平分线所在的直线。]
2.悬念、引子、思考
将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?
说明:首先这个三角形必须是等腰三角形,要不然
三角形就放不平.对于“为什么”学生可能会回答
“不知道”,那就进入下一环节“合作学习,探究
等腰三角形的性质”;也有可能会回答“等腰三角
形三线合一”,因为不能排除有部分学生“预习过”
什么的.那就可以追问“等腰三角形三线为什么会
合一”,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探究等腰三角形的性质”;这是考虑到大多数学生的利益.
二.交流互动,探求新知
1.等腰三角形的性质
合作学习:分三组教学活动材料
教学活动材料1:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,
(1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出所发现的结论。
(2)你发现了等腰三角形的哪些性质?
教学活动材料2:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,
(1)根据我们已经获得的等腰三角形是轴对称图形,图2-5中等腰三角形ABC的对称轴是什么?△ABD各个顶点的对称点分别是什么?由此可见,将△ABD作关于直线AD的轴对称变换,所得的像是什么?
(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角形,以及所有相等的线段和相等的角.
(3)你有什么发现?能得出等腰三角形的哪些性质?
教学活动材料3:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,
(1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角
(2)你发现了等腰三角形的哪些性质?
(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)
结论:等腰三角形性质定理1:等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”
等腰三角形性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.
2.多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.
3.解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?
(当重锤线经过三角尺斜边的中点时,重锤线与斜边上的高线叠合(等腰三角形三线合一),即斜边与重锤线垂直,所以斜边与梁是水平的.及时地解决问题,使学生懂得学习的价值.)
4.应用定理时的推理格式:
用几何语言表述为:
在△ABC中,如图,∵AB=AC ∴∠B=∠C(在一个三角形中等边对等角)
在△ABC中,如图
(1)∵AB=AC ,∠1=∠2
∴AD⊥BC,BD=DC (等腰三角形三线合一)
(2)∵AB=AC,BD=DC
∴AD⊥BC,∠1=∠2
(3)∵AB=AC,AD⊥BC
∴BD=DC,∠1=∠2
5.例题学习
例1 如图2-6,在△ABC中,AB=AC, ∠A=50°,求∠B,∠C的度数.
解:在△ABC中,
∵AB=AC ,
∴∠B=∠C(在一个三角形中等边对等角)
∵∠A+∠B+∠C=180°,∠A=50°,
∴∠B=∠C===65°.
练习1P36课内练习2
(例1和练习1是巩固“等腰三角形的两个底角相等”这条性质而配置的,比较简单,可以让学生自己去探索,并完成解题过程,然后师生突出评述推理过程.)
例2 已知线段a,h(如图2-7)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.
教学中可作如下启发:
(1)假设图形已经作出,如课本图2-8,BC长已知,可以先作出BC边,要作等腰三角形ABC,关键是要作出哪一个点?
(2)已知BC边上的高线的长度为h,你能作出BC边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点A的位置吗?
(例2是运用尺规作等腰三角形,作法思路需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质)
练习2填空:
(1)在△ABC中,AB=AC,若∠A=40°则∠C= ;若∠B=72°,则∠A= .
(2)在△ABC中,AB=AC,∠BAC=40°,M是BC的中点,那么∠AMC= ,∠BAM= .
(3)如图,在△ABC中,AB=AC,∠DAC是△ABC的外角。
∠BAC=180°- ∠B,∠B=( )
∠DAC= ∠C
(4)如图,在△ABC中,AB=AC,外角∠DCA=100°,则∠B= 度.
(以此来巩固等腰三角形的性质,同时培养学生的观察分析的能力)
三.合作探究,强化能力.
探究1:已知在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点但不与A重合,且OB=OC,试猜想AE与BC的关系,并说明你的猜想的理由.
猜想:AE⊥BC,BD=CD
∵AB=AC(已知)
OB=OC(已知)
AO=AO(公共边)
∴△ABO≌△ACO(SSS)
∴∠BAO=∠CAO
∴AE⊥BC,BD=CD(等腰三角形底边上中线,底边上高线与顶角平分线互相重合)
探究2:等腰三角形两底角的平分线大小关系。
已知:如图,在△ABC中,AB=AC,BD、CE分别是两底角的平分线。
猜想:BD=CE.
解:∵AB=AC(已知),
∴∠ABC=∠ACB (在一个三角形中等边对等角)
∵BD、CE分别是两底角的平分线(已知)
∴∠DBC=∠ABC,∠DCB=∠ACB (角平分线的定义)
∴∠DBC=∠DCB,
在△DBC和△ECB中∠DBC=∠DCB,BC=CB(公共边),∠ABC=∠ACB ,
∴△DBC≌△ECB(ASA)
∴BD=CE(全等三角形对应边相等)
(探究1需要学生根据数学语言画出几何图形,然后进行归纳、猜想、推理;探究2需要学生把文字转化为数学语言和几何图形,再进行归纳、猜想、推理,要求更高些;初衷有一个,那就是培养学生归纳、猜想、推理的自主学习的能力,以上两例都有一定的难度,教师可以根据班级的实际情况选用)
四.归纳小结,强化思想
1.在本节课的学习中,你有哪些收获?和我们共享.
2.你还有什么不理解的地方,需要老师或同学帮助.
(采用谈话式小结,沟通师生之间的情感,给学生一个梳理知识的空间,培养学生的知识整理能力与语言表达能力)
五.作业
1.作业本
2.预习2.3节内容
2.3 等腰三角形的判定
〖教学目标〗
◆1、理解等腰三角形的判定方法的证明过程.
◆2、通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.
◆3、学生初步了解数学来源于实践,反过来又服务于实践的辨证唯物主义观点.
〖教学重点与难点〗
◆教学重点:等腰三角形的判定方法及其运用.
◆教学难点:等腰三角形判定方法证明中添加辅助线的思想方法以及等腰三角形性质与判定的区别.
〖教学过程〗
(一)、提出问题
出示投影片(图形出示,内容教师讲解)。
某地质专家为估测一条东西流向河流的宽度,他选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度就可知河流宽度。
同学们很想知道,这样估测河流宽度的根据是什么呢?这位专家的意思是AB=BC,也就是△ABC是等腰三角形,那么他是怎么知道△ABC是等腰三角形的呢?今天我们就要学习等腰三角形的判定。(板书课题)
(二)复习引入 A
提问:
如图,在△ABC中,AB = AC,图中必有哪些角相等?为什么?
反过来,若∠B= ∠C,一定有AB=AC 吗?
B C
通过“纸制三角形实验”发现“等角对等边”的结论。这个结论是否真实可靠,必须从理论上加以证明。
等腰三角形判定定理的证明。
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
已知:ΔABC中,∠B =∠C.
求证:AB = AC.
(学生思考:定理的证明方法。按实验小组进行分组讨论,探讨证明的思路。然后由一位学生口述,教师板书,学生评论,由此引出多种证法,再由学生归纳作辅助线的方法,教师总结。)
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B =∠C.,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引出.再让学生回想等腰三角形中常添的辅助线,学生可找出作ΔABC的平分线AD或作BC边上的高AD等,证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.
(3)判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.
(三)例题教学
例1某地质专家为估测一条东西流向河流的宽度,他选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度就可知河流宽度。这个方法正确吗?请说明理由。
例2 如图,BD是等腰三角形ABC的底边AC上的高,DE∥BC,交AB于点E.判断ΔBDE是不是等腰三角形,并说明理由。
(四)小组合作
练习(1)已知:OD平分∠AOB,ED∥OB,求证:EO=ED。
(2)已知:OD平分∠AOB,EO=ED。求证ED∥OB。
(3)已知:ED∥OB,EO=ED。求证:OD平分∠AOB。
归纳总结:该图形是有关等腰三角形的一个很常用的基本图形,上述练习说明在该图中“角平分线、平行线、等腰三角形”这三者中若有两者必有第三,熟练这个结论,对解决含有这个基本图形的教复杂的题目是很有帮助的。
(五) 探究活动
(1)已知:如图a,AB=AC,BD平分∠ABC,CD平分∠ACB,过D作EF∥BC交AB于E,交AC于F,则图中有几个等腰三角形
(2)如图b,AB=AC,BF 平分∠ABC交AC于F,CE平分∠ACB交AB于E,BF和BE交于点D,且EF∥BC,则图中有几个等腰三角形
(3)等腰三角形ABC中,AB=AC,BD平分∠ABC,CD平分∠ACB,过A作EF∥BC交CD延长线于E,交BD延长线于F,则图中有几个等腰三角形 (自己画图)
(4)如图c,若将第(1)题中的AB=AC去掉,其他条件不变,情况会如何 还可证出哪些线段的和差关系
(六)课堂小结(师生共同小结)
等腰三角形的判定方法
辅助线
解决实际问题的关键
2.4 等边三角形
〖教学目标〗
◆1、理解等边三角形的性质与判定.
◆2、体会等边三角形与现实生活的联系.
◆3、理解等边三角形的轴对称性.
〖教学重点与难点〗
◆教学重点:等边三角形的性质与判定.
◆教学难点:等边三角形的轴对称变换与旋转变换.
〖教学过程〗
复习引入:
1、回顾等腰三角形定义、性质。
2、一般情况下腰与底有何关系?若三边相等又如何?
3、学生举例生活中的等边三角形(交通警告标志、台球桌上用于固定起始球放置的框)
新课教学:
等边三角形定义:三边相等的三角形叫做等边三角形,也称正三角形
等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形
合作学习
用直尺和圆规作一个边长是3CM的等边三角形ABC
讨论:(1)在△ABC中,∠A、∠B、∠C存在什么关系?
(2)任选一个角(如∠A),作出它的角平分线,再作出该角所对的边的高线、中线,试问这些线有何特征?
(3)等边三角形有几条对称轴?这些对称轴有何特点
(4)除了定义以外,什么条件下也可以得到等边三角形
(学生分组讨论,教师提示从角、边去考虑)
师生一起总结:
1、等边三角形的内角相等,且为60度
2、等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线
4、等边三角形的判定:
三边相等的三角形是等边三角形
三角相等的三角形是等边三角形
有一个角是60度的等腰三角形是等边三角形
例题分析:
例1:如图,等边三角形ABC中,三条内角
平分线AD、BE、CF相交于点O。
(1)△AOB,△BOC,△AOC有何关系?并说明理由
(2)求∠AOB,∠BOC,∠AOC的度数,将△ABC
绕点O旋转,问要旋转多少度就能和原来的三角形重合(只要求说出一个旋转度数)?
解:(1)△AOB,△BOC,△AOC互相全等
∵AD、BE、CF是等边三角形的三条角平分线
∴AD、BE、CF所在直线是等边△ABC的对称轴
∴△AOB与△AOC关于直线AD成轴对称
∴△AOB≌△AOC
同理 △AOB≌△COB
∴△AOB≌△AOC≌△COB
思考:能否由全等判定得到这三个全等?
(2)∵△AOB≌△AOC≌△COB
∴∠AOB=∠BOC=∠AOC (全等三角新的对应角相等)
OA=OB=OC (根据什么?)
∵∠AOB+∠BOC+∠AOC=3600
∴∠AOB=∠BOC=∠AOC=3600=1200
∴△ABC绕点O旋转1200,就能和原来的三角形重合
练习巩固
1、课本P32课内练习1、2
2、课本P32作业题A组2、3
师生小结
等边三角形的性质
等边三角形的判定
等边三角形的轴对称性
作业:作业本
2.5 直角三角形(1)
〖教学目标〗
◆1、体验直角三角形应用的广泛性,进一步认识直角三角形.
◆2、学会用符号和字母表示直角三角形.
◆3、经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.
◆4、会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.
〖教学重点与难点〗
◆教学重点:“直角三角形的两个锐角互余”的性质及其应用在以后的几何学习中将得到广泛的应用,是本节教学的重点.
◆教学难点:本节例2涉及的知识点较多,推理表述较长,是本节教学的难点.
〖教学过程〗
一、复习引入:
三角形内角和.
2. 等腰三角形及相关概念。
3. 小学已学习的直角三角形知识。(直角三角形及相关概念-直角边、斜边等)
学生口答后引入课题。(板书课题:2.5直角三角形)
二、新课教学:
1.由复习得出直角三角形的概念。
板书:有一个角是直角和三角形叫做直角三角形.
直角三角形表示方法:Rt⊿.
由书本图例,让学生体验直角三角形应用的广泛性。(让学生举例说明直角三角形应用)
2.合作学习:
(1)直角三角形的内角有什么特点?
(2)怎样判定一个三角形是直角三角形?
学生讨论后,小结得出:
(板书)直角三角形的两个锐角互余.反过来,有两个角互余的三角形是直角三角形。
结论解释,与判定、性质相联系。
3.例题教学:
如图,CD是Rt⊿ABC斜边上的高.请找出图中各对互余的角.
解:∵ ⊿ABC是Rt⊿.
∴ ∠A+∠B=90°
∵ CD⊥AB(已知)
∴ ⊿ACD,⊿BCD是Rt⊿.
∴ ∠A+ACD=90°,∠B+∠BCD=90°.
∵ ∠ACB=Rt∠,
∴ ∠ACD+∠BCD=90°.
∴图中一共有4对互余的角,分别是∠A与∠B;∠A与∠ACD,
∠B与∠BCD ∠ACD与∠BCD.
例题小结:得到两角互余的途径.
学生操作探索:这个三角形有什么特点?
(给学生相应的提示:探索的内容)
由学生操作探索引入等腰直角三角形的概念,并对概念作出必要的解释.
(板书)一般地,两条直角边相等的直角三角形叫做等腰直角三角形。
等腰直角三角形的两个底角相等,都等于45°(为什么?)由学生口答完成。
例2 如图,在等腰直角三角形ABC中,AD是斜边BC上的高,则AD=BD=CD.请说明理由。
仿书本例题解答.
例题小结.
变式:
(1)已知,如例2图,AD=BD=CD,AD是斜边BC上的高,则AB=AC.请说明理由.
(2)已知,如例2图,AD=BD=CD,∠B=45°,则⊿ABC是等腰直角三角形.请说明理由.
三、练习:见书本第35页。
四、总结回顾:
直角三角形的概念及其应用的广泛性.
直角三角形的两个锐角互余。(直角三角形性质中的一条)
有两个角互余的三角形是直角三角形.(直角三角形判定的一种方法)
等腰直角三角形的概念及其相关性质。
注重知识间的相互联系,学会通过比较理解掌握相应的几何知识。
五、作业:
见书本第35页作业题。
2.5 直角三角形(2)
〖教学目标〗
◆1、掌握直角三角形斜边上中线性质,并能灵活应用.
◆2、领会直角三角形中常规辅助线的添加方法.
◆3、通过动手操作、独立思考、相互交流,提高学生的逻辑思维能力以及协作精神.
〖教学重点与难点〗
直角三角形的性质及其应用是初中几何部分比较重要的内容,是实验几何向论证几何过渡之后学生学习几何知识的一个新的起点,有着承上启下的作用,而“直角三角形斜边中线等于斜边一半”这一性质无论在几何计算中还是在相关的推理论证中都起到很重要的作用。
◆教学重点:“直角三角形斜边上中线等于斜边的一半”这一性质的灵活应用.
◆教学难点:在直角三角形中如何正确添加辅助线.
〖教学过程〗
直角三角形斜边上的中线等于斜边的一半
学生实验:每个学生任意画一个直角三角形,并画出斜边上的中线,然后利用圆规比较中线与斜边的一半的长短。
教师提问:让学生猜测直角三角形斜边上的中线与斜边一半的大小关系。
教师板书性质后可以演示一下教师预先准备好的证明过程给学生看,但不要求学生掌握。
课堂练习ⅰ:
(1)直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为﹍﹍﹍﹍。
(2)已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC=﹍﹍﹍﹍。
直角三角形性质应用举例
例 如图2-18,一名滑雪运动员沿着倾斜角为30°的斜边,中A滑行至B。
已知AB=200m,问这名滑雪运动员的高度下降了多少m?
教师先引导学生理解题意后分析:书上分析。
教师板演解题过程:
解:如图作Rt△ABC的斜边上的中线CD,则CD=AD=1/2AB=1/2×200=100( 在直角三角形中,斜边上的中线等于斜边的一半)
∵∠B=30°(已知)
∴∠A=90°-∠B=90°-30°
(直角三角形两锐角互余)
∴∠DCA=∠A=60°(等边对等角)
∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形内角和等于180°)
∴△ABC是等边三角形(三个角都是60°的三角形是等边三角形)
∴AC=AD=100
答:这名滑雪运动员的高度下降了100m。
讲完后教师归纳一下“在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半”让学生注意书写的规范。
课堂练习ⅱ:
P37、课内练习
师生小结
今天学习的直角三角形性质也是以后在直角三角形中一条常用的辅助线。
布置作业
书上作业题 1、2、3、4、5
2.6 探索勾股定理(1)
〖教学目标〗
◆1、体验勾股定理的探索过程.
◆2、掌握勾股定理.
◆3、学会用勾股定理解决简单的几何问题.
〖教学重点与难点〗
◆教学重点:本节的重点是勾股定理.
◆教学难点:勾股定理的证明采用了面积法,这是学生从未体验的,是本节教学的难点.
〖教学过程〗
(一)、创设情境,导入新课
向学生展示国际数学大会(ICM--2002)的会标图徽,并简要介绍其设计思路,从而激发学生勾股定理的兴趣。可以首次提出勾股定理。
(二)、做一做
通过学生主动合作学习来发现勾股定理。
(1)、让学生尽量准确地作出三个直角三角形,两直角边长分别为3cm和4cm,6cm和8cm,5cm和12cm,并根据测量结果,完成下列表格:
a b c
3 4
6 8
5 12
(三)、议一议
1、你能发现直角三角形三边长度之间的关系吗?在图象交流的基础上,老师板书:直角三角形的两直角边的平方和等于斜边的平方。这就是著名的勾股定理。也就是说:如果直角三角形的两直角边为a 和b ,斜边为 c ,那么。我国古代称直角三角形的较短的直角边为勾,较长直角边为股,斜边为弦,这就是勾股定理的由来。
2、分别以9cm 和12cm为直角边长作一个直角三角形,并测量斜边长度,请同学们两人一组讨论,三边关系符合勾股定理吗?
(四)、想一想
已知直角三角形ABC的两条直角边分别为a,b,斜边长为c,画一个边长为c的正方形,将4个这样的直角三角形纸片按下图放置。教师提出3个问题:
(1)、中间小正方形的边长和面积分别为多少?(用 a,b 表示)
(2)、大正方形的面积可以看成哪几个图形面积相加得到?
(3)、据(2)可以写出怎样一个关系式?
化简后便验证了勾股定理。可以启发学生其他的验证方法。
(五)用一用
通过例题的讲练使学生体验勾股定理应用的普遍性和广泛性。
例1、已知△ABC中,∠C=90°,AB=c, BC=a, AC=b,
如果求c;
如果求b;
可以让学生独立完成这个基本训练,但教师应强调解题过程的规范表述。
例2、如图,是一个长方形零件,根据所给尺寸(单位:mm),求两孔中心A、B之间的距离。
首先,教学过程中应启发学生构造出含所求线段的直角三角形,从而应用勾股定理求解。
其次,应强调,构造新图形的过程及主要的推理过程都应书写完整。
(六)、练一练
1、已知△ABC中,∠C=90°,AB=c, BC=a, AC=b,
如果求c;
如果求b;
如果求a,b;
2、用刻度尺和圆规作一条线段,使它的长度为cm。
3、利用作直角三角形,在数轴上表示。
(七)、小结
1、至少了解一种勾股定理的验证方法;
2、除了掌握勾股定理外,还应初步学会构造直角三角形,以便应用勾股定理。
(八)、布置作业 (见作业本2.6)
教学反思
本节内容重在探索与发现,要给充分的时间让学生讨论与交流。适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广。
2.6 勾股定理的逆定理(2)
〖教学目标〗
◆1、掌握勾股定理的逆定理的内容及应用.
◆2、会应用勾股定理的逆定理来判断直角三角形.
◆3、了解我国古代数学家的伟大成就,激发学生热爱祖国的思想和求知欲.
◆4、通过研究讨论培养学生的逻辑思维能力.
〖教学重点与难点〗
◆教学重点:勾股定理的逆定理是教学的重点.
◆教学难点:教学的难点是根据勾股定理的逆定理判断已知三边的三角形是否为直角三角形.
〖教学方法〗以学生为主体通过实验的方法,研究性学习.
〖教学用具〗三角板,圆规,小黑板等.
〖教学过程〗
复习回顾,导入新课
首先回顾上节课内容:勾股定理。
勾股定理体现了直角三角形的三边关系:直角三角形中两条直角边的平方和等于斜边的平方。这里老师有一个感兴趣的问题有待于解决,不知大家有没有想过:把这个定理反过来说:如果一个三角形有两边平方和等于第三边的平方,这个三角形一定是直角三角形吗?
大家一起来分组做个实验,第一组的同学在本子上画一个边长为3cm,4cm,5cm的三角形,第二组的同学每人画一个边长为5cm,12cm,13cm的三角形,第三组的同学每人画一个边长为8cm,15cm,17cm的三角形,第四组的同学拿着三角板或量角器分别到一,二,三组来抽查,看看他们画出的三角形大概是什么形状呢?能不能得出一个公认的结论呢?
实验讨论,新课教学
通过实验大家得出结论了吗?(当第四组的同学量时,其他同学也看到了并得出自己的结论)现在大家讨论半分钟,每组派一个代表说出你们的结论,看看结论一致吗?哪一组概括得更准确?
1.归纳结论:
勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
。
结论的应用:
知道这个结论有什么作用吗?(有些同学是知道的)显然如果给出一个三角形的三边长,我们可通过计算两边的平方和,第三边的平方,通过判断他们是否相等来看这个三角形是不是直角三角形。
如 以6,8,10为三边的三角形是直角三角形吗?
解:
以6,8,10为边的三角形是直角三角形。
那么做这种题目时有没有规律,是不是盲目计算呢?
如 三边为5,6,7的三角形是不是直角三角形?
分析:我们先用中的哪一个与第三边的平方比较呢?有的同学已经想好了,总是用较短的两边的平方和,与最长的那个边的平方比较。我们来试几道题
例题
根据下列条件,分别判断a,b,c为边的三角形是不是直角三角形
(1)a=7,b=24,c=25; (2) a=,b=1,c=
解:(1)
以7,24,25为边的三角形是直角三角形。
(2)
以为边的三角形不是直角三角形。
已知的三边分别为a,b,c且a=,b=2mn,c=(m>n,m,n是正整数),是直角三角形吗?说明理由。
分析:先来判断a,b,c三边哪条最长,可以代m,n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。
解:
是直角三角形
注意事项:
书写时千万别写成是直角三角形。这里你弄错了勾股定理的逆定理的条件和结论。
分清何时利用勾股定理,何时利用其逆定理
巩固练习
教科书43页,课内练习1,作业题1各选做一些,课内练习2等
课内练习2分析:
先求BC2+AC2=Ⅰ+Ⅱ+Ⅳ+Ⅴ+Ⅶ
AB2=Ⅰ+Ⅲ+Ⅳ+Ⅵ+Ⅷ
我们由已知Ⅱ+Ⅴ+Ⅶ=Ⅲ+Ⅵ+Ⅷ
显然BC2+AC2=AB2
(三)课堂小结:
勾股定理逆定理。
勾股定理逆定理的作用:利用三边关系判断三角形形状。
通过以上学习要有意识培养自己的逻辑思维能力。
(四)作业:
教科书44页1题:(2),(5);2题;3题;4题。
(五)补充练习:
如下图中分别以三边a,b,c为边向外作正方形,正三角形,为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?
2.7 直角三角形全等的判定
〖教学目标〗
◆1、探索两个直角三角形全等的条件.
◆2、掌握两个直角三角形全等的条件(HL).
◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“HL”.
◆教学难点:直角三角形判定方法的说理过程.
〖教学过程〗
创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
合作学习:
回顾:判定两个直角三角形全等已经有哪些方法?
有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
教师归纳出方法后,要学生注意两点:<1>“HL”是仅适用于Rt△的特殊方法。
<2> 应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件
(3) 教师引导、学生练习 P47
应用新知,巩固概念
例题讲评
例:已知:P是∠AOB内一点,PD⊥OA,PE ⊥OB,D,E分别是垂足,且PD=PE,则点P在∠AOB的平分线上,请说明理由。
分析:引导猜想可能存在的Rt△;构造两个全等的Rt△;要说明P在∠AOB的平分线上,只要说明∠DOP=∠EOP
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:P48 1. 2. P49 3
五、小结回顾,反思提高
(1)本节内容学的是什么?你认为学习本节内容应注意些什么?
(2)学习本节内容你有哪些体会?
(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)
(4)你现在知道的有关角平分线的知识有哪些?
六、布置作业:
A
B
C
D
E
P
A
B
C
D
E
F
O
30°
A
B
C
A
D
30°
C
B
a
b
c
A
B
160
90
40
40
A
B
C
Ⅰ
Ⅲ
Ⅳ
Ⅴ
Ⅱ
Ⅵ
Ⅶ
Ⅷ
A
C
a
b
c
S1
S2
S3
B
A
B
C
a
b
c
S1
S2
S3
A
B
C
a
b
c
S1
S2
S34.1 抽样
〖教学目标〗
◆1、知识与技能目标:
通过丰富的实例,感受抽样的必要性,了解总体、个体、样本等概念,体会不同的抽样可能得到不同的结果。
◆2、过程与方法目标:
从一个学生比较熟悉的调查问题提出抽样的概念,并通过“做一做”及“合作学习”让学生进一步体验抽样的必要性,另一方面也是让学生从中去体验抽样中会遇到的问题和基本要求,并根据要求编制简单的柚样方案。
◆3、情感与态度目标:
从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关注社会问题,培养一种社会的责任感。
〖教学重点与难点〗
◆教学重点:抽样的概念和抽样的必要性。.
◆教学难点:本节中的“合作学习”情景比较复杂,学生缺乏抽样的经验是本节教学的难点。
〖教学方法和手段〗
基于本节课内容的特点和八年级学生的心理及思维发展的特征,在教学中选择演示法、讨论法和总结法相结合。与学生建立平等融洽的互动关系,营造合作交流的学习氛围。在演示、引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。
〖教学过程〗
(一)创设情境,引入新知。
1.提出问题
随着人们生活水平的提高,电视、电脑的普及,中小学生的视力普遍下降,专家呼吁要保护学生的视力。
此时,教师安排活动一 :
(1) 调查我们班级近视的学生有多少人?
(2) 调查我们学校近视的学生又有多少人?
这个问题,只有同学准确地统计自己班级和全校各班近视的学生。就可以解决上面两个问题。
教师指出,像这样为一定目的而全面的凋查叫做普查。例如人口普查;
为引出抽样的概念,此时,教师安排活动二 :
想一想:要了解全国初中生的视力情况,有人设计了下三种调查方法:
对全国所有的初中生进行视力测试。
对某一所著名中学的初中生进行视力测试。
在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行视力测试。
你认为采用哪一种调查方法比较合适?
学生通过思考比较并结合自身的体验经历,不难回答以上问题。对全国所有的初中生进行视力测试属于普查,工作量太大,没有必要。对某一所著名中学的初中生进行视力测试,这种方法缺乏普遍性,不合适。在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行视力测试,这种调查具有可操作性及代表性。方法(3)比较合适。
课本首先从学生的生活实际——选取一些如学生的视力等学生身边的事例提出问题,引出抽样的概念,在研究这些事例的某方面问题时,由于遇到不方便、不可能、不必要等因素,体会抽样的必要性。
教师应给学生独立思考的空间并让学生充分发表自己的意见,只要合理都予以肯定。然后指出抽出一部分对象作调查分析(揭示课题)——抽样。
(二)师生互动,探索新知。
1、归纳概括抽样的概念。(请学生归纳,教师补充)
人们在研究某个自然现象或社会现象时,往往会遇到不方便、不可能或不必要对所有的对象作调查的情况,于是从中抽取一部分对象作调查,这就是抽样。
因此,引导归纳调查的两种方法。
普查即全面调查,如人囗普查的方法。
抽样调查即部分调查,当遇到不方便、不可能或不必要对所有的对象作调查分析时,采用抽样的方法。
做一做
某机构要调查一手机生产厂家的手机质量,是否需要把该厂生产的手机进行检测?
要了解初中生有多少学生知道父母的生日,有没有必要对你校初中各年级所有同学进行调查?有没有必要对全国初中学生进行调查?如需要用抽样的方法,请设计一个抽样方案。
问题1、不需要,只需抽样。问题2对一所学校一个年级所有同学进行调查缺乏普遍性,不可取,对全国初中学生进行调查即普查,工作量太大,没有必要。应采取抽样调查,例如在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行调查。
2、归纳概括抽样的优缺点。
议一议:鄞州电视台需要在我区调查“鄞州新闻”的收视率
每个看电视的人都要被问到吗?
对一所中学学生的调查结果能否作为该节目的收视率?
你认为对不同社区、年龄层次、文化背景的人所做调查的结果会一样吗?
解 电视台在调查时不可能问到每一个看电视的人。对一所中学学生的调查结果不能作为该节目的收视率,因为只有中学生,缺乏代表性。不同社区、年龄层次、文化背景的人所做调查的结果不一样,因为他们的兴趣、爱好等方面情况相距甚远。
通过此问题的相互交流和相互探讨,引导学生体会抽样调查选取有代表性的对象的重要性.
抽样调查方法只考察一部分对象,所以它具有调查的范围小,节省时间、人力、物力的优点.缺点是不如普查得到的调查结果精确,它得到的只是估计值,而这个估计值是否接近实际情况,还取决于对象选得是否具有代表性。
3、统计学中的基本概念
在抽样调查中,我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察的对象叫做个体,从总体中取出的一部分个体的集体叫做这个总体的一个样本,样本中的个体的数目叫做样本的容量。
通过下面两个例题,弄清总体、个体、样本、样本容量的概念。
调查某县农民家庭情况时,从中取出1000名农民进行统计。
为检测一批日光灯的寿命,从中抽样检测50个是日光灯的寿命。
指出:
如果要考察的对象内容比较笼统时,样本通常指的是人和物。因此,该县的全体农民是总体,每一个农民就是个体。从中取出1000名农民集体是总体的一个样本。样本容量是1000。
如果要考察的对象内容是某一方面的特性时,这些特性常常以数据的形式呈现出来。这批日光灯的寿命的全体是总体,个体是每支日光灯的寿命,样本是指抽取的各支日光灯的寿命的集体。
通过师生一问一答,又让学生体会到了知识之间的联系,更提高了学生的数学学习兴趣。
例题的安排既是为了突出在抽样过程中样本选取重要性,说明不同的抽样方法可能得到不同的结果,比较自然引出总体、个体、样本、样本容量等概念,要注意到课本对“总体、个体、样本、样本容量”这四个概念要求上的变化。这些概念是在调查过程中必然会遇到的,只要上课讲解让学生了解这些概念即可,不必要求学生做这方面识别的练习。
三、合作交流,共同提高
上面了解总体、个体、样本、样本容量等概念,抽样的目的是为了获取样本,并用样本来估计总体。下面就利用前面所学的有关抽样知识进行一次实践活动。
合作学习 某地区今年约有10000名学生参加初中毕业升学考试。为了解数学考试成绩,从中取出的1000份学生的答卷来统计合格率、优秀率和平均分,问应怎样抽取1000份答卷,使所了解的数据具有代表性?
已知有关信息如下:
抽样在卷头拆封进行(即看不见考生的姓名、所在学校、准考证号码等)
每个考场有25名考生,每个考场考生的答卷装订成一叠,包装袋上写有考场编号。
参加考试的同一所学校的学生的各个考场连续编号。
在合作学习之前,先对全班进行分组,一般四人一组较为方便,教师要组织好下面四步:
第一步 先让学生独立思考,尝试解决问题,同时弄清提供的有关信息,(1)表明不能按所在学校、准考证号码抽样;(2)表明考场约10000÷25=400个,即抽1000份学生的答卷也就是从400袋试卷中抽取40袋答卷,(3)说明抽取40袋试卷时,不能根据试卷的序号连续抽取;这些信息对有此同学教师要给与必要的提示与辅导。
第二步 让事先组织好小组内部交流抽样最佳方案,教师巡视与各组交流情况。 主要抽样时即要抽足40袋答卷,又要使抽取的样本具有代表性、随机性,使得抽得的样本具有普遍意义。
第三步 以小组为单位展示不同的讨论结论。学生自由发言评价。
第四步 教师简要小结和点评,肯定对的,指出不足,适当讲解,并进行相应的奖励。
合作学习为了让每一位学生参与学习的全过程,给每一位学生提供展示的空间,使学生能够充分表达自己的观点,通过组内的交流、探讨,使学生不断完善自己的观点,不断的产生新的想法。
课内练习:要估计山西交口县新庄村“百里蝶群”中大约有多少只蝴蝶,你会采取什么方法?
提示:可在50千米蝴蝶集中的沿线上设50个点,在每个点设观察者,每个观察者统计本点前后100米的大约蝴蝶数。求出50个点观察者沿线每200米的平均数,乘以50,得蝴蝶总数的估计值。(答案不唯一)
四、梳理知识,归纳小结。
请学生谈自己学习了本节课的收获。
在交流中师生可共同梳理知识点:
(1)认识抽样调查及抽样必要性;
(2)了解总体、个体、样本、样本容量等概念。
(3)会根据要求编制简单的抽样方案。
通过这个环节,一方面使教师了解到学生的学习情况,对知识的理解程度,另一方面通过学生谈收获也对本节知识重新进行了一次回顾,学生在相互交流中相互促进。
五、分层作业,巩固应用
分层次布置作业:作业题:1、2、3必做;作业题:4、5选做。
4.2 平均数
〖教学目标〗
◆1、理解平均数的概念,会计算平均数.
◆2、了解加权平均数,会计算加权平均数.
◆3、会用样本的平均数来估计总体的平均数.
〖教学重点与难点〗
◆教学重点:本节教学的重点是平均数的计算(包括加权平均数).
◆教学难点:例2的问题情境比较复杂,还涉及加权平均数的计算是本节教学难点.
〖教学过程〗
创设情境,提出问题.
图片欣赏
(出示课件:播放水果在收获前,果农常会先估计果园里果树的产量,你认为应该怎样估计呢
二、启发诱导,探索新知.
1.合作学习
某果农种植的100棵苹果树即将收获.果品公司在付给果农定金前,需要对这些果树的苹果总产量进行估计.
(1)果农任意摘下20个苹果,称得这20个苹果的总质量为4千克.这20个苹果的平均质量是多少千克
(2)果农从100棵苹果树中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据(单位:个):
154,150,155,155,159,150,152,155,153,157.你能估计出平均每棵树的苹果个数吗
(3)根据上述两个问题,你能估计出这100棵苹果树的苹果总产量吗
2.引出平均数的概念,平均数用符号 表示,读做“拔”,计算平均数公式
=(…+)
指出:在实践中,常用样本的平均数来估计总体的平均数.例如,在上面的例子中,用20个苹果的平均质量0.2千克来估计100棵苹果树上苹果的平均质量,用10棵树的平均苹果个数154个来估计100棵树的平均苹果个数.
3.做一做
三、学以以致用,体验成功.
1.讲解例1
方法(一):直接根据平均数的意义来计算,这里的,,…指的是什么 等于多少
方法(二):15个数据中有几个6,几个7,几个8,几个9,几个10 =15与这些相同数的个数之间有什么关系 所求的平均数的算式还可以写成怎样的算式
2.由上例中的方法(二)概括出加权平均数的概念和权的意义
3.讲解例2
分析:第(1)题只需求一般的平均数,学生容易理解.
第(2)题涉及加权平均数,不妨以801班为例,表中相应的3个数据为=80,
=84,=87, 给定三个项目的权的比为15 :35:50,即表示::=
15:35:50,因此可设=15,=35,=50(>0) , 加权平均数
=
4.课本课内练习第1,2
四、总结回顾,反思内化.
通过这节课的学习,你有什么收获
1.知识小结,这节课我们学均数、加权平均数的概念,会计算平均数和加权平均数.
2.会用样本的平均数来估计总体的平均数.
五、作业
课本作业题1,2,3,4,5,6必做.
4.3 中位数和众数
4.4 方差和标准差
〖教学目标〗
◆1、了解方差、标准差的概念.
◆2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.
◆3、能用样本的方差来估计总体的方差.
◆4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.
〖教学重点与难点〗
◆教学重点:本节教学的重点是方差的概念和计算。.
◆教学难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.
〖教学过程〗
一、创设情景,提出问题
甲、乙两名射击手的测试成绩统计如下表:
第一次 第二次 第三次 第四次 第五次
甲命中环数 7 8 8 8 9
乙命中环数 10 6 10 6 8
①请分别 算出甲、乙两名射击手的平均成绩;
②请根据这两名射击手的成绩在图中画出折线图;
二、合作交流,感知问题
请根据统计图,思考问题:
①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较, 哪一个偏离程度较低?
②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?
③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?
④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?
⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,应如何比较?
三、概括总结,得出概念
根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、及用方差来判断数据的稳定性。
方差的单位和数据的单位不统一,引出标准差的概念。
(注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器)
现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?
(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论)
四、应用概念,巩固新知
已知某样本的方差是4,则这个样本的标准差是 。
已知一个样本1,3,2,X,5,其平均数是3,则这个样本的标准差是 。
甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X甲=X乙,如果甲的射击成绩比较稳定,那么方差的大小关系是S2甲 S2乙
已知一个样本的方差是S=[(X1—4)2+(X2—4)2+…+(X5—4)2],则这个样本的平均数是 ,样本的容量是 。
5、八年级(5)班要从黎明和张军两位侯选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)
黎明: 652 653 654 652 654
张军: 667 662 653 640 643
如果你是班主任,在收集了上述数据后,你将利用哪些统计的知识来决定这一个名额?(解题步骤:先求平均数,再求方差,然后判断得出结论)
五、巩固练习,反馈信息
1、课本“课内练习”第1题和第2题。
2、课本“作业题”第3题。
3、甲、乙两人在相同条件下各射靶 ( 1 )
10 次,每次射靶的成绩情况如图所示.
( 1 )请填写下表:
( 2 )请你就下列四个不同的角度对这次测试结果进行分析:
从平均数和方差相结.合看,谁的成绩较好?
从平均数和命中 9 环以上的次数相结合看,谁的成绩较好?
从折线图上两人射击命中环数的走势看,谁更有潜力?
六、通过探究,找出规律
已知两组数据1,2,3,4,5和101,102,103,104,105。
求这两组数据的平均数、方差和标准差。
将这两组数据画成折线图,并用一条平行于横轴的直线来表示这两组数据的平均数,观察你画的两个图形,你发现了哪些有趣的结论?
若两组数据为1,2,3,4,5和3,6,9,12,15。你要能发现哪些有趣的结论?
用你发现的结论来解决以下的问题:
已知数据X1,X2,X3,…Xn的平均数为a,方差为b,标准差为c。则
数据X1+3,X2+3,X3+3…,Xn+3的平均数为 ,方差为 ,标准差为 。
数据X1—3,X2—3,X3—3…Xn—3的平均数为 ,方差为 ,标准差为 。
数据4X1,4X2,4X3,…4Xn的平均数为 ,方差为 ,标准差为 。
数据2X1—3,2X2—3,2X3—3,…2Xn—3的平均数为 ,方差为 ,标准差为 。
小结回顾,反思提高
这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数。方差越大,说明数据的波动越大,越不稳定。
标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便。
利用方差比较数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论。
分层作业,延伸拓展
必做题:作业本底页。
选做题:
在某旅游景区上山的一条小路上有一些断断续续的台阶,如下图是其中的甲、乙段台阶路的示意图(图中的数字表示每一级台阶的高度).请你用所学过的统计量(平均数、中位数、方差等)进行分析,回答下列问题: ( 1 )两段台阶路每级台阶的高度有哪些相同点和不同点? ( 2 )哪段台阶路走起来更舒服?为什么? ( 3 )为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
4.5 统计量的选择和应用
〖教学目标〗
◆1、会根据反映数据的集中程度、离散程度的不同需要选择合适的统计量.
◆2、初步会根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.
〖教学重点与难点〗
◆教学重点:根据反映数据的集中程度,离散程度的不同需要选择合适的统计量.
◆教学难点:例一 教学过程.
〖教学过程〗
一、知识回顾
以前学习的统计量有平均数、中位数、众数、方差、标准差。平均数、中位数、众数是描述一组数据集中的统计量,方差、标准差是描述一组数据离散程度的统计量。 在实际生活中,我们不仅关注数据的集中程度,也关注数据的离散程度,但反映集中程度的三个统计量也有局限性,如平均数容易受极端值的影响,中位数不能充分利用全部数据信息。当一组数据出现多个众数时,这时众数就没有多大的意义。
二、例题讲解,知识应用
1、 例1 下列各个判断或做法正确吗?请说明理由。
(1) 篮球场上10人的平均年龄是18岁,有人说这一定是一群高中生(或大学生)在打球。
(2) 某柜台有A、B、C、D、E五种品牌的同一商品,按销售价格排列顺序为A、B、C、D、E,经过市场调查发现,对该商品消费的平均水平与C品牌的价格相同,所以柜台老板到批发部大量购进C品牌。
分析:(1)平均年龄18岁并不一定人人都18岁左右,也可能是几个年龄教大的带着几个年龄教小的在一起打球。
(2)平均消费水平与 C品牌的价格相同,并不代表消费者都喜欢购买品牌,比如消费者大量购买了B、D品牌后,其平均消费水平有可能与C品牌的价格相同,但在消费者心目中,C品牌并不是首选商品。
解:(1)错,比如2名30岁的老师带着8名15岁的初中生在一起打球。
(2) 错,好比消费者在分别大量购买了价格比C品牌高和比C品牌低的其他商品后,其平均消费水平也有可能和C品牌的价格相当。
注:(1)中最好利用平均数、中位数和众数一起判断更为精确;
(2)中进货的依据应该是众数,而不是平均数。
2、例题解析(91页例一) 分布讨论:
(1) 确定定额时,如果定额太高或太低,会带来什么后果?定额太低,不利于提高效率,定额太高,不利于提高积极性。
(2) 算出15名工人这一天生产的机器零件的平均个数,如果以这个平均数作为定额,那么有多少工人完不成定额?把平均数作为定额合适吗?以平均数10作为定额,那么将有8名工人可能完不成任务。
(3) 再求出众数、中位数,若将中位数、众数作为定额,与平均数做定额相比较,你认为哪个更适应? 工人生产零件个数的中位数是9个,如果以中位数9作为定额,那么可能有7名工人完不成任务。 工人生产零件个数的众数是8个,如果以众数8作为定额,那么大多数工人都能完成或超额完成任务,有利于调动工人的积极性。因此把定额定为8个。 小结:在根据判断决策的需要选择应用统计量时,首先应确定知道的是数据的集中程度,还是数据的离散程度。
3、讲解93页作业题1 从平均数来看,甲组学生成绩比乙组学生成绩好。
4、讲解92页例二 当平均数相等时,看方差大小,方差小的说明波动小,稳定性强。
三、知识巩固 练习:93页课内练习、94页作业题3
四、小结 还是两者都需要,若要知道数据的集中程度,则应求数据的平均数、中位数和众数。如书例1:若要知道数据的离散程度,则应求数据的方差或标准差,如书例2。
五、作业 见作业本