1.4全等三角形

文档属性

名称 1.4全等三角形
格式 zip
文件大小 372.7KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2012-02-20 08:32:57

图片预览

文档简介

(共20张PPT)
仔细观察下列各组图形,你发现了什么?
两个图形的形状和大小完全相同。
能够重合的两个图形叫做全等图形
如果把这些形状和大小一样的图形叠合起来,会重合吗?
形状相同,但大小不同,
因此它们不是全等图形.
它们是全等图形吗?
能够重合的两个三角形叫做全等三角形
A
B
C
A’
B’
C’
(A’)
(B’)
(C’)
它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A’、B和B’、C和C’; 互相重合的边叫做全等三角形的对应边:如AB和A’B’、BC和B’C’、CA和C’A’; 互相重合的角叫做全等三角形的对应角:如∠A和∠A’、 ∠B和∠B’、∠C和∠C’
A
B
C
A’
B’
C’
1.“全等”符号:≌
如上图:△ABC≌△A’B’C’
2.全等三角形性质: 全等三角形的对应边相等,对应角相等
∵△ABC≌△A’B’C’ ∴AB=A’B’、BC=B’C’、CA=C’A’ ∠A=∠A’、 ∠B=∠B’、 ∠C=∠C’
通常把对应顶点的字母写在对应位置上
几何语言:
1:面积相等的两个三角形是全等三角形吗?
2.判断题:
①全等三角形的对应边相等,对应角相等.( )
②全等三角形的周长相等. ( )
③面积相等的三角形是全等三角形. ( )
④全等三角形的面积相等. ( )



×
1:已知: ABC≌ DCE
请找出图中对应角和对应边.
A
B
C
D
E
在两个全等三角形中:
1:最长边(或最大角)与最长边是对应边(或对应角)
2:对应边所对的角是对应角,
最短边(或最小角)与最短边是对应边(或对应角)
对应角所对的边是对应边;
类型之一:找全等三角形的对应元素
A
B
C
D
请找出右图中对应的边和对应角.
2:已知: ABD≌ CDB
ACO≌ BDO
3:已知:
请找出右图中对应的角和对应边.
有公共角(或公共边)的,公共角是对应角(或对应边).
A
B
O
C
D
有对顶角的,对顶角是对应角;
6:若△ABC≌△ADE,请找出对应边和对应角;
4:若△ABD≌△ACD,请找出对应边和对应角;
A
B
C
D
A
B
C
D
E
5:若△ABC≌△AED,请找出对应边和对应角;
D
A
E
C
B
7.已知图中的两个三角形全等,请你找出它们的对应角和对应边,并用符号表示这两个三角形全等。
8. 如图已知△ABC≌△ADE,∠C=∠E,BC=DE,其它的对应边有:_____,对应角有:_____.
A
B
C
D
E
例1:如图,点c是AB中点,△ACD≌△BCE,且
AD≠CE,
(1)写出△ACD与△BCE中相等的边与相等的角
(2) ∠ACE与∠BCD相等吗 说明理由.
A
D
E
C
B
类型之二:运用全等三角形的性质解决问题
变式:如图△ACF≌△DBE,且∠E=∠F
AD=9,BC=5,求AB的长.
A
B
C
E
F
D
1、如图,已知△ABD≌△ACE, 且∠1=45°,∠ADB=95°,则 ∠AEC= ∠C= .
1
A
E
B
C
D
2、如图,已知△ABC≌△DFE, 且AC与DE是对应边,若BE=14, FC=4,则BC= .
A
B
C
F
E
D
50°
95°
9
已知△ABD≌△ACE,且AB=8,DB=7,AD=6则BE=
巩固练习:
4:如图,点B,F,C,E在同一直线上,且△ABC≌ △DEF,若BF=1cm,BC=4cm,求线段BE的长.
D
F
E
A
C
B
5:如图, 已知△ABC≌ △ADE, ∠CAD=15°, ∠DFB=90°, ∠B=25°,求∠E和∠DGB的度数.
A
B
C
E
G
F
D
6:若△ABC≌△DEF,AC和DF,AB与DE是对应边,∠A=40°,∠B=30°BC=5cm,那么∠DFE=_____.EF=_________.
110°
 5cm
A
B
C
F
E
D
7: 如图△ ABD ≌ △CDB,若AB=4,DA=5,BD=6,则BC= ,CD= 。
A
B
C
D
5
4
( )
解:

AD平分ABC

∠1=∠2 因此将图形(图1)沿AD对折时,射线AC与射线_______重合
AB=AC

点C与__重合,即△ABD与______重合(图2)

△ABD≌△ACD

BD=CD

( )
∠B=∠C
( )
( )
( )
1
2
A
B
C
D
B(C)
A
D
图2
例2. 图1,AD平分∠ABC,AB=AC, (1)△ABD与△ACD全等吗? (2)BD与CD相等吗 ∠B与∠C呢?请说明理由
全等三角形的对应角相等
已知
已知
AB
B
全等三角形的定义
全等三角形的对应边相等
△ACD
类型之三:运用全等三角形定义说明三角形全等
寻找对应元素的规律
(1)有公共边的,公共边是对应边;
(2)有公共角的,公共角是对应角;
(3)有对顶角的,对顶角是对应角;
(4)两个全等三角形最大的边是对应边,最小的边是对应边;
(5)两个全等三角形最大的角是对应角,最小的角是对应角;
(6)两个三角形全等时,对应顶点所在的角是对应角,对应边所对的角是对应角,对应角所对的边是对应边。 
归纳总结:
如图,BD是长方形ABCD的一条对角线。
(1)△ABD与△CDB全等吗?你是怎么知道的?
(2)如果你认为△ABD与△CDB全等,请用符号表示,并说出它们的对应边和对应角。
A
D
C
B
说一说: