中小学教育资源及组卷应用平台
七下数学第一章:平行线能力提升测试题答案
选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.答案:D
解析:根据同位角的定义可知:图中∠1和∠4是同位角,
故选D.
( http: / / www.21cnjy.com / )
2.答案:A
解析:∵AB∥CD,∠EFC=40°,
∴∠BAF=40°,
∴∠BAE=140°,
又∵AG平分∠BAF,
∴∠BAG=70°,
∴∠GAF=70°+40°=110°,
故选:A.
3.答案:B
解析:作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴AB∥DE∥DE,
∴∠1=∠BCF,∠FCE=∠2,
∵∠1=30°,∠2=35°,
∴∠BCF=30°,∠FCE=35°,
∴∠BCE=65°,
故选:B.
( http: / / www.21cnjy.com / )
4.答案:B
解析:由图可知,
∠B和∠1是同旁内角,故①、②错误;
∠2和∠4是内错角,故③正确;
∠A和∠BCD不是同旁内角,故④错误;
∴正确的只有1个;
故选:B.
( http: / / www.21cnjy.com / )
5.答案:D
解析:如图,记相交所成的锐角为 ,
因为,
所以,
若,
所以,
所以e//f,
而不能推出图中的直线平行,
故选D.
( http: / / www.21cnjy.com / )
6.答案:A
解:A选项画图(1):可得平行,且与原来方向相同;
B选项画图如图(2):可得不平行;
C选项画图如图(3):可得不平行;
D选项画图如图(4):可得平行,但与原来方向相反;
故选A.
7.答案:A
解析:如图,∵矩形的对边平行,
∴∠2=∠3=44°,
根据三角形外角性质,可得:∠3=∠1+30°,
∴∠1=44°﹣30°=14°.
故选A.
8.答案:A
解析:∵ ∠OGD=148°,
∴∠EGO=32°
∵AB∥CD,
∴∠EGO =∠GOF,
∵的角平分线交于点,
∴∠GOE =∠GOF,
∵∠EGO=32°
∠EGO =∠GOF
∠GOE =∠GOF,
∴∠GOE=∠GOF=32°,
∵,
∴=90°-32°-32°=26°
故选A.
9.答案:C
解析:∵两个角的两边分别平行,
∴这两个角相等或互补.
设其中一角为x°,
若这两个角相等,则x=3x﹣20,
解得:x=10,
∴这两个角的度数是10°和10°;
若这两个角互补,
则180﹣x=3x﹣20,
解得:x=50,
∴这两个角的度数是50°和130°.
∴这两个角的度数是50°、130°或10°、10°.
故选:C.
10.答案:A
解析:过G作GMAB,
∴∠2=∠5,
∵ABCD,
∴MGCD,
∴∠6=∠4,
∴∠FGC=∠5+∠6=∠2+∠4,
∵FG、CG分别为∠EFG,∠ECD的角平分线,
∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,
∵∠E+2∠G=210°,
∴∠E+∠1+∠2+∠ECD=210°,
∵ABCD,
∴∠ENB=∠ECD,
∴∠E+∠1+∠2+∠ENB=210°,
∵∠1=∠E+∠ENB,
∴∠1+∠1+∠2=210°,
∴3∠1=210°,
∴∠1=70°,
∴∠EFG=2×70°=140°.
故选:A.
( http: / / www.21cnjy.com / )
填空题(本题共6小题,每题4分,共24分)
温馨提示:填空题必须是最简洁最正确的答案!
11.答案:3
解析:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=1.
所以BC=BE+CE=1+2=3,
12.答案:
解:∵∠2=100°,
∴∠4=100°.
故答案为100°.
( http: / / www.21cnjy.com / )
13.答案:
解析:∵直线a∥b,
∴∠5=∠1=α°,∠2=∠4,
∵∠3+∠4+∠5=180°,∠3=∠4,
∴∠3=∠4=(180°﹣α°)=
∴∠2=∠4=
故答案为:
14.答案:
解析:如图,过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故答案为:134°.
15.答案:
解析:如图,延长DE交AB的延长线于G,
∵,
∴∠D=∠AGD=40°,
∵BFDE,
∴∠AGD=∠ABF=40°,
∵BF平分∠ABE,
∴∠EBF=∠ABF=40°,
∵BFDE,
∴∠BED=180°﹣∠EBF=140°.
故答案为:140°.
( http: / / www.21cnjy.com / )
16.答案:①②④
解析:∵平分,平分
∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP
∵
∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜
∴
故①正确
∵
∴∠ABE=∠CDB
∵∠CDB+∠CDF=180゜
∴
故②正确
由已知条件无法推出AC∥BD
故③错误
∵,∠ACD=2∠ACP=2∠2
∴∠ACP=∠E
∴AC∥BD
∴∠CAP=∠F
∵∠CAB=2∠1=2∠CAP
∴
故④正确
故正确的序号为①②④
三.解答题(共6题,共66分)
温馨提示:解答题应将必要的解答过程呈现出来!
17.解析:和是直线ED和直线BD被直线AB所截而产生的同位角;
和是直线AB和直线AC被直线BD所截而产生的内错角;
和是直线AB和直线BD被直线AC所截而产生的同位角;
和是直线ED和直线CD被直线EC所截而产生的同旁内角;
和是直线ED和直线BC被直线EC所截而产生的内错角;
和是直线BE和直线BC被直线EC所截而产生的同旁内角.
18.解析:∵∠1=∠2(已知)
∴(等式的性质)
即=∠ DAC
∵∠3=∠4,(已知)
∴∠3=∠BAE(等量代换)
∴∠3=∠DAC
∴(内错角相等,两直线平行)
19.解析:(1)BC∥DE .
理由:∵BE平分∠ABC
∴∠ABE=∠EBC
∵∠ABE=∠BED
∴∠EBC=∠BED
∴BC∥DE .
(2)∵BE平分∠ABC ,∠ABE=25°,
∴∠ABC=2∠ABE=50°
∵BC∥DE
∴∠ADE=∠ABC=50°.
20.解析:(1)∵∠CDG=∠B,
∴DG∥AB,
∴∠1=∠BAD,
∵∠1+∠FEA=180°,
∴∠BAD+∠FEA=180°,
∴EH∥AD;
(2)由(1)得:∠1=∠BAD,EH∥AD,
∴∠1=∠H,
∴∠BAD=∠H.
21.解析:(1)∠FAB=∠4.理由如下:
∵AC//EF,
∴∠1+∠2=180°,
又∵∠1+∠3=180°,
∴∠2=∠3,
∴EF//CD,
∴∠FAB=∠4;
(2)∵AC平分∠FAB,
∴∠2=∠CAD,
又∵∠2=∠3,
∴∠3=∠CAD,
又∵∠4=∠3+∠CAD,
∴72°=2∠3,
∴∠3=36°,
∵EF⊥BE,EF//AC,
∴∠FEC=90°,∠ACB=90°,
∴∠BCD=∠ACB﹣∠3=90°﹣36°=54°.
( http: / / www.21cnjy.com / )
22.解析:(1)由题意可得:
与是一对同位角,与是一对同旁内角,与是一对内错角,
故答案为:同位角,同旁内角,内错角;
(2)平行,理由是:
∵∠ACB=∠3,
∴FG∥AC,
∴∠4=∠2,
又∵∠4+∠5=180°,
∴∠2+∠5=180°,且∠2和∠5是一对同旁内角,
∴CF∥DE;
(3)∵CF⊥AB,
∴∠BFC=∠AFC=90°,
∵∠A=56°,
∴∠2=∠1=90°-56°=34°,
∴∠ACB=2∠2=68°,
又∵CF∥DE,
∴∠ADE=∠2=68°×=34°,
故答案为:68°,34°.
( http: / / www.21cnjy.com / )
23.解析:(1)∵ED∥AB,∴∠ABC=∠DOC.
∵∠DEF=∠ABC,
∴∠DOC=∠DEF,∴BC∥EF.
(2)BC∥EF.
理由:∵ED∥AB,∴∠ABC+∠DOB=180°.
∵∠ABC+∠DEF=180°,
∴∠DOB=∠DEF,∴BC∥EF.
(3)如果两个角相等或互补,且一边平行,那么另一边平行(或在同一条直线上).
(4)∵AC⊥BC,DE⊥AC,∴DE∥BC,
∴∠DCB=∠1=48°.
∵CD⊥AB,HF⊥AB,
∴CD∥HF,
∴∠DCB+∠2=180°,
∴∠2=132°.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
七下数学第一章:平行线能力提升测试题
选择题:(本题共10小题,每小题3分,共30分)
温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!
1.如图,同位角是( )
A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠4
2.如图,直线AB∥CD,AG平分∠BAE,∠EFC=40°,则∠GAF的度数为( )
A.110° B.115° C.125° D.130°
3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )
A.70° B.65° C.35° D.5°
4.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A和∠BCD是同旁内角. 其中说法正确的有( )
A.0个 B.1个 C.2个 D.3个
5.如图,已知,下列正确的是( )
A.若,则 B.若,则 C.若,则 D.若,则
6.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )
A.先右转45°,再左转45° B.先左转45°,再右转135°
C.先左转45°,再左转45° D.先右转45°,再右转135°
7.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为( )
A. B. C. D.
8.如图,直线,点在上,点、点在上,的角平分线交于点,过点作于点,已知,则的度数为( )
A.26 B.32 C.36 D.42
9.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )
A.50°、130° B.都是10° C.50°、130°或10°、10° D.以上都不对
10.如图,,点为上方一点,分别为的角平分线,若,则的度数为( )
A. B. C. D.
填空题(本题共6小题,每题4分,共24分)
温馨提示:填空题必须是最简洁最正确的答案!
11.如图,若△DEF是由△ABC平移后得到的,已知点A、D之间的距离为1,CE=2,则BC=________
12.如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于_____
13.如图,直线a∥b,直线c,d与直线b相交于点A,∠3=∠4,设∠1为α度,则∠2= (用含有α的代数式表示).
14.如图,直线AB∥CD,∠E为直角,则∠1=
15.如图,已知,平分,,且,则的度数为______
16.如图,已知平分,平分,.下列结论:
①;②;③;④若,则.
其中正确的是_____________________(填序号)
三.解答题(共6题,共66分)
温馨提示:解答题应将必要的解答过程呈现出来!
17(本题6分)如图所示,指出下列各组角是哪两条直线被哪一条直线所截得的,并说出它们是什么角?和;和;和;和;和;和.
18(本题8分)填写理由:如图,∠1=∠2,∠3=∠4,,试说明.
解:∵∠1=∠2(已知)
∴(______________)
即=∠______
∵∠3=∠4,(已知)
∴∠3=∠______(______)
∴∠3=∠______
∴(______________________)
19(本题8分)如图,已知BE平分∠ABC,点D在射线BA上,且∠ABE=∠BED .
(1)判断BC与DE的位置关系,并说明理由 .(2)当∠ABE=25°时,求∠ADE的度数 .
20(本题10分).如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.
21(本题10分)如图,AC//EF,∠1+∠3=180°.
(1)判定∠FAB与∠4的大小关系,并说明理由;
(2)若AC平分∠FAB,EF⊥BE于点E,∠4=72°,求∠BCD的度数.
( http: / / www.21cnjy.com / )
22(本题12分)如图,在三角形中,、、分别是、、上的点,是的平分线,已知,.
(1)图中与是一对______,与是一对______,与是一对______.(填“同位角”或“内错角”或“同旁内角”)
(2)判断与是什么位置关系?并说明理由.
(3)若,垂足为,,求和的度数.
( http: / / www.21cnjy.com / )
23.(本题12分)(1)已知∠ABC,射线ED∥AB且交BC于点O,如图21①,过点E作∠DEF=∠ABC,说明BC∥EF的理由;
(2)如图②,已知∠ABC,射线ED∥AB且交BC于点O,∠ABC+∠DEF=180°.判断直线BC与直线EF的位置关系,并说明理由;
(3)根据以上探究,你发现了一个什么结论 请你写出来;
(4)如图③,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB,垂足分别为C,D,E,F,若∠1=48°,求∠2的度数.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)