(共18张PPT)
2.4二元一次方程组的应用(2)
浙教版 七年级下册
(1)审:认真审题,分清题中的已知量、未知量,并明确它们之间的相等关系;
(2)设:恰当地设未知数;
(3)列:依据题中的相等关系列出方程组;
(4)解:解方程组,求出未知数的值;
(5)验:检验所求得的未知数的值是否符合题意和实际意义;
(6)答:写出答案.
用二元一次方程组解决实际问题的步骤:
新知讲解
例2 一根金属棒在0℃时的长度是q m,温度每升高1 ℃,它就伸长p m.当温度为t ℃时,金属棒的长度L可用公式L=pt+q计算.已测得当t=100 ℃时, L=2.002m;当t=500 ℃时,L=2.01m.
(1)求p,q的值;
(2)若这根金属棒加热后长度伸长到2.016m,问这时金属棒的温度是多少
合作探究
解:(1)根据题意,得
②- ①,得400p=0.008,解得p=0.00002
把p=0.00002代入①,得0.002+q=2.002,解得q=2
即
答:p=0.00002,q=2
(2)由(1),得l=0.00002t+2
金属棒加热后,长度伸长到2.016m,即当l=2.016m时,
2.016=0.00002t+2, 解这个一元一次方程,得t=800(℃)
答:此时金属棒得温度是800 ℃.
课堂练习
例3 通过对一份中学生营养快餐的检测,得到以下信息:
(1)快餐总质量为300g;
(2)快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;
(3)蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.
试分别求出营养快餐中蛋白质、碳水化合物、脂肪、矿物质的质量和所占百分比.
课堂总结
解:设一份营养快餐中含蛋白质xg,脂肪yg,则含矿物质为2yg,碳水化合物为(300╳85%-x)g,
由题意得
①+②,得 3y=45,
解得 y=15 (g).
∴ x=150-y=135 (g),2y=2×15=30(g),
300×85%-x=255-135=120(g)
答:营养快餐中蛋白质、碳水化合物、脂肪、矿物质的质量和所占的百分比如表.
蛋白质 脂肪 矿物质 碳水化合物 合计
各种成分的质量(g) 135 15 30 120 300
各种成分所占百分比 45% 5% 10% 40% 100%
D
4.据统计,某市今年五月份外来与外出旅游的总人数为 226 万人,分别比去年同期增长 30% 和 20%,去年同期外来旅游比外出旅游的人数多 20 万人.分别求出该市今年五月份外来和外出旅游的人数.
解:设去年五月份外来旅游的人数为 x 万人,外出旅游的人数为 y 万人.
由题意得
解这个方程组,得
所以(1+30%)x=130,(1+20%)y=96.
答:该市今年五月份外来和外出旅游的人数分别是 130 万人和 96 万人.
5.某商场计划用 40000 元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种型号的手机,出厂价分别为甲型号手机每部 1200 元,乙型号手机每部 400 元,丙型号手机每部 800 元.
(1)若全部资金只用来购进其中两种型号的手机,共 40 部,则商场共有哪几种进货方案?
解:(1)①若购进甲、乙两种型号的手机,设购进甲型号手机 x1 部,乙型号手机 y1 部.
根据题意,得
解得
②若购进甲、丙两种型号的手机,设购进甲型号手机 x2 部,丙型号手机 y2 部.
根据题意,得
解得
③若购进乙、丙两种型号的手机,设购进乙型号手机 x3 部,丙型号手机 y3 部.
根据题意,得
解得
因为 x3 表示手机部数,只能为正整数,所以这种情况应舍去.
综上所述,商场共有两种进货方案.
方案一:购进甲型号手机 30 部,乙型号手机 10 部;
方案二:购进甲型号手机 20 部,丙型号手机 20 部.
(2)商场每销售一部甲型号手机可获利 120 元,每销售一部乙型号手机可获利 80 元,每销售一部丙型号手机可获利 120 元,在(1)的条件下,为使销售时获利最大,商场应选择哪种进货方案?
解:(2)方案一获利:120×30+80×10=4400(元);
方案二获利: 120×20+120×20=4800(元).
所以方案二获利较多,
所以商场应购进甲型号手机 20 部,丙型号手机20部.
实际问题
数学问题
(二元一次方程组)
数学问题的解
(二元一次方程组的解)
实际问题的答案
设未知数
列方程组
解方程组
代入法
加减法
消元
检验
https://www.21cnjy.com/help/help_extract.php