教学课题 3.4乘法公式(1) 课型 新
课堂形式 纵横 □ / 小组 □ / 马蹄 □ / 其它 □ 人数
教学目标 知 识与技 能 1.掌握平方差公式2.会运用平方差公式进行多项式的乘法法则。3.会运用平方差公式进行简便运算。
过 程与方 法 通过运算多项式乘法,来推导平方差公式,培养学生认识由一般法则到特殊法则的能力。
情感态度与价 值 观 通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
重点 平方差公式的推导及应用。
难点 对公式中a,b的广泛含义的理解及正确运用。
板书设计
教学辅助
过程 教学内容 设计说明
一、创设情景,导入课题1、要求学生完成下列练习:①(m+n)(p+q)②(a+b)(x-y)③(2x+3y)(a-b)④(a+2)(a-2)⑤(3-x)(3+x)⑥(2m+n)(2m-n) 承上启下作用,即复习了旧知识,又为新课埋下了伏笔。
过程 教学内容 设计说明
2、问题:在完成上述练习过程中,你发现了什么特点?(引导学生发现结果为平方差型的题目,并将此类题目重新组合到一起,供学生观察)在探索中引入课题。二、交流探索,归结公式1、探索引导学生对引例中的④⑤⑥进行研究,对探索发现的特点进行整理归纳。并回答问题:④⑤⑥小题等式左边有哪些特点?回答问题:④⑤⑥小题等式右边有哪些特点?2、归结引导学生仔细而具体地观察题目特征,进而分析产生这些特点的原因,然后由特殊到一般寻找出规律,并用语言进行概括,得到:(a+b)(a-b)=a2-b2即两数和与这两数差的积等于这两数的平方差。3、几何解释平方差公式做一做:展示:边长a的大正方形中有一个边长为b的小正方形。(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗? 学生在教师的引导下,自主探索问题。学生是学习的主体,学生是在教师引导下,自主发现和认识问题,并且经过自主探索获得数学知识。学生获得知识的过程,实际上是学生在已有经验的基础上,在教师的指导下主动构建知识的过程。学生在教师的组织指导下,在获得数学知识的同时受到科学发现的熏陶,享受发现公式的乐趣,学习兴趣得到激发,思维能力得到发展,学习效率大大提高,同时还学会学习、交流、合作。通过拼图游戏给出平方差公式的一个几何解释,使学生对此公式有一个直观认识。
过程 教学内容 设计说明
让学生先思考小明的这种拼法对吗?(2)中的阴影部分的面积是(1)中的阴影部分的面积吗?并说明理由(3)比较(1)(2)的结果,你能验证平方差公式吗?先请同学们阅读,然后独立完成,由学生板书:(1)a2-b2;(2)长为(a+b),宽为(a-b),它的面积是:(a+b)(a-b)。(3)①②式相等,因为表示的是同一块阴影部分的面积。即a2-b2=(a+b)(a-b)。三、例题分析,巩固公式。1、例1 利用平方差公式计算:(1)(3x+5y)(3x-5y);(2)(0.5b+a)(-0.5b+a)(3)(-m+n)(-m-n)让学生仔细观察例题,看出两个多项式之间的相同点和不同点(老师可以引导学生:两个多项式的第一项相同,而第二项互为相反数)符合运用平方差公式的条件(教师引导学生把每个多项式的每一项看作是a,第二项看作是b)。2、例2 用平方差公式计算(1)103×93 (2)59.8×60.2解:(1)103×93=(100+3)(100-3)=1002-32=10000-9=9991(2)59.8×60.2=(60-0.2)(60+0.2)=602-0.22=3600-0.04=3599.96可引导学生思考(103×93)比100×100小 59.8×60.2比60×60小 你发现了什么? 起范例和巩固公式的作用,并使学生进一步体会平方差公式中a,b的含义,它们可以是数,也可以是整式。培养学生观察能力和发现问题的能力,以及运用所学的知识灵活解决问题的能力。
过程 教学内容 设计说明
四、探究延伸,发展能力1、探究:怎样计算(2+1)(22+1)(24+1)(28+1)+1?你能找到比较简便的方法吗?类似地,怎样计算(3+1)(32+1)(34+1)(38+1)+1?你能进一步的猜想吗?2、备选练方差公式计算(1)(-0.25x-y)(-0.25x+y)(2)(-2x+3y)(-2x-3y)(3)(2x-5)(2x+5)-(2x+1)(2x-1)五、归纳小结,充实结构1、今天学到了什么?让学生口头表述平方差公式的内容,并用字母写出它的表达式。2、你认为平方差公式的用处是什么?3、怎样使用平方差公式?六、知识留恋,课后韵味布置作业:课后作业题 适当的提高、点拔,而起到分层次教学的作用,又使学生体会公式的运用。(1)(2)用来分辨公式的a,b。(3)稍有综合,培养综合运用能力。使学生进一步明确公式,认识到平方差公式在多项式乘法中的重要作用以及如何正确使用平方差公式。
教学反思 教学中感觉较好的地方以及原因:
教学中感觉不足的地方以及原因,改进方案: