首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
浙教版(2024)
七年级下册(2024)
第2章 二元一次方程组
本章复习与测试
2021-2022学年浙教版数学7年级下册第二章二元一次方程组单元测验-尖子培优版(Word版 含答案)
文档属性
名称
2021-2022学年浙教版数学7年级下册第二章二元一次方程组单元测验-尖子培优版(Word版 含答案)
格式
zip
文件大小
171.7KB
资源类型
教案
版本资源
浙教版
科目
数学
更新时间
2022-04-12 09:16:07
点击下载
图片预览
1
2
3
4
5
文档简介
2021-2022学年浙教版数学7年级下册
第二章二元一次方程组测验-尖子培优版
一、单选题
1.某车间每天能生产甲种零件120个或者乙种零件100个.3个甲种零件与2个乙种零件配成一套,要在27天内生产最多的成套产品,问甲、乙两种零件各生产几天?设甲种零件生产 天,乙种零件生产 天,下列方程组正确的是( )
A. B.
C. D.
2.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?( )
A.2300千米 B.2400千米 C.2500千米 D.2600千米
3.若关于x、y的方程组 的解为整数,则满足条件的所有a的值的和为( )
A.6 B.9 C.12 D.16
4.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍,如果搭建的正三角形和正六边形共用了2023根火柴,并且正三角形的个数比正六边形的个数多 个,那么能连续搭建的正三角形的个数是( )
A. B. C. D.
5.已知关于x,y的方程组 的解为 ,则关于方程组 的解为( )
A. B. C. D.
6.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是面积为 的小正方形,则每个小长方形的面积为( )
A.135cm2 B.108cm2 C.68cm2 D.60cm2
7.我国古代数学家张丘建在《张丘建算经)里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是( )
A.87 B.84 C.81 D.78
8.如果 ,其中xyz≠0,那么x:y:z=( )
A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1
9.我们规定: 表示不超过 的最大整数,例如: , , ,则关于 和 的二元一次方程组 的解为( )
A. B. C. D.
10.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为( )
A.3 B.﹣3 C.﹣4 D.4
11.甲、乙两人共同解关于x,y的方程组 ,甲符合题意地解得 乙看错了方程②中的系数c,解得 ,则 的值为( )
A.16 B.25 C.36 D.49
12.已知方程组 的解满足x+y<0,则m的取值范围是( )
A.m>﹣1 B.m>1 C.m<﹣1 D.m<1
二、填空题
13.某运输公司有核定载重量之比为 的甲、乙、丙三种货车,该运输公司接到为某灾区免费运输物资任务,迅速按照各车型核定载重量将物资运往灾区,承担本次运输的三种货车数量相同,当这批物资送达灾区后,发现还需要一部分物资才能满足当地灾区的需要,于是该运输公司又安排部分甲、乙丙三种货车进行第二次运输,其中乙型车第二次送输的物资量是还需要运输的物资量的 ,丙型车两次运输的物资总量是两次运往灾区物资总量的 ,甲型车两次运输的物资总量与乙型车两次运输的物总量之比为 ,则甲型车第一次与甲型车第二次运输的物资量之比是 .
14.已知关于 , 的二元一次方程组 的解为 那么关于 、 的二元一次方程组 的解为 .
15.今年春节某超市组装了甲、乙两种礼品盆,他们都是由 三种零食组成,其中甲礼品盒装有3千克 零食,1千克 零食,1千克 零食,乙礼品盒装有2千克 零食,2千克 零食,2千克 零食,甲、乙两种礼品盒的成本均为盆中 三种零食的成本之和.已知每千克 的成本为10元,乙种礼品盒的售价为60元,每盒利润率为25%甲种每盒的利润率为50%当甲、乙两种礼盒的销售利润率为 时,该商场销售甲、乙两种礼盒的数量之比是 .
16.若方程组 的解是 ,则方程组 的解是,x= ,y= .
17.三个同学对问题“若方程组 的解是 ,求方程组 的解。”提出各自的想法。
甲说:“这个题目的好象条件不够,不能求解”;
乙说:“它们的系数有一定的规律,可以试试”;
丙说:“能不能把第二个方程组的两个方程的两边都除以4,通过换元替代的方法来解决”,
参考他们的讨论,你能求出这个方程组的解吗?x= .y=
18.若x+y+z=15,-3x-y+z=-25,x、y、z皆为非负数,记整式5x+4y+z的最大值为a,最小值为b,则a﹣b = .
19.一驴友分三次从M地出发沿着不同线路( A线、B线、C线)去N地,在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等; B线、C线路程相等,都比A线路程多32%; A线总时间等于C线总时间的半;他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线;在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了20%、50%、50%.若他用了x小时穿越丛林、V小时涉水行走和z小时攀登走完C线,且x,y,z都为正整数,则 .
20.已知关于x,y的方程组 ,下列结论:
①当a=3时,方程组的解是 ;②无论a取何值,x与y的和都不可能为1;③如果x-y=0,则a=2;④如果x为正数,y为非负数,则-5
21.甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球 个
22.如果方程组 的解与方程组 的解相同,则a+b= .
23.某公园“六·一”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备 元钱买门票.
24.已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c的最大值为m,最小值为n. 则n-m的值为 .
三、计算题
25.
26.
27.
28.已知关于x、y的方程组
问a为何值时,方程组有无数多组解 a为何值时,只有一组解
四、解答题
29.小颖家准备装修一套房子,若请甲、乙两个装修公司合作,则需6周完成,需花费工钱5.2万元;若先请甲公司单独做4周后,剩下的请乙公司来做;则还需9周才能完成,需花费工钱4.8万元.若只请一个公司单独完成,从节约开支的角度来考虑,小颖家应该选甲公司还是乙公司?
30.4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名 岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
31.某校办工厂有工人60名,生产某种由一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套
32.甲、乙两人共同解方程组 .解题时由于甲看错了方程①中的a,得到方程组的解为 ;乙看错了方程②中的b,得到方程组的 ,试计算a2019+( b)2020的值.
五、综合题
33.水是生命之源,“节约用水,人人有责”.为了加强公民的节水意识,合理利用水资源,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水及阶梯计费价格表的部分信息(注:水费按月份结算,m3表示立方米)
每户每月用水量(m3) 自来水销售价格(元/m3) 污水处理价格(元/m3)
不超出6m3部分 1.10
超出6m3不超出10m3的部分 1.10
超出10m3的部分 7.00 1.10
(注:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用).
已知2021年三月份,小红家用水7m3,交水费27.2元,小聪家用水9m3,交水费38.4元.
(1)请你根据以上信息,求表中 , 的值;
(2)由于七月份正值夏天,小红家预计用水12.5吨,求小红家七月份预计应缴水费多少元?
(3)若小聪家四、五月份共用水20m3,其中四月份的用水量低于五月份的用水量,共缴水费89元,则小聪家四、五月份的用水量各是多少?
34.已知关于x,y的方程组
(1)请直接写出方程 的所有正整数解;
(2)若方程组的解满足 ,求m的值;
(3)无论实数m取何值,方程 总有一个固定的解,请直接写出这个解?
35.我市某包装生产企业承接了一批礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材(不计损耗),如图甲.(单位:cm)
(1) 列出方程(组),求出图甲中a与b的值;
(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式(高大于长)与横式(长大于高)两种无盖礼品盒.
①两种裁法共生产A型板材 张,B型板材 张;
②能否在做成若干个上述的两种无盖礼品盒后,恰好把①中的A型板材和B型板材用完?若能,则竖式无盖礼品盒与横式无盖礼品盒分别做了几个?若不能,则最多能做成竖式和横式两种无盖礼品盒共多少个?并直接写出此时做成的横式无盖礼品盒的个数.
36.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.
(1)试问:甲、乙两个工程队每天分别修路多少米
(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人
37.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。
(1)小明购买了A,B两种书籍共20本,且购买的B书籍数量比A书籍数量的2倍少4本。
①小明购买了A,B两种书籍各多少本?
②小明至少需要花费多少钱?
(2)如果小刚花了600元购买A,B两种书籍,其中A书籍购买了8本,那么有哪几种购买方案?其中哪一种方案最划算?
38.阅读理解:
若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.
知识运用:
(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.
在点M和点N中间,数 所表示的点是(M,N)的好点;
(2)在数轴上,数 和数 所表示的点都是(N,M)的好点;
(3)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
39.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,
(1)当蓄水到 吨时,需要截住泉水清理水池。若开放小排水口 小时,再开放大排水口 分钟,能排完水池半的水:若同时开放两个排水口 小时,刚好把水排完.求两个排水口每分钟的流量;
(2)现关闭排水口,开放泉水放满水池后,泉水仍以固定的流量流入水池.若用-台抽水机抽水, 小时刚好把水抽完;若用 台抽水机抽水, 分钟刚好把水抽完。证明:抽水机每分针的抽水量是泉水流量的 倍;
(3)在 的条件下,若用 台抽水机抽水,需要名长时间刚好把水池的水抽完?
40.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.
(1)当 时,求c的值.
(2)当a= 时,求满足|x|<5,|y|<5的方程的整数解.
(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.
答案解析部分
1.【答案】B
2.【答案】B
3.【答案】C
4.【答案】D
5.【答案】A
6.【答案】A
7.【答案】A
8.【答案】C
9.【答案】A
10.【答案】D
11.【答案】B
12.【答案】C
13.【答案】
14.【答案】
15.【答案】6:11
16.【答案】-1;-3
17.【答案】5;13
18.【答案】
19.【答案】6
20.【答案】②④
21.【答案】110
22.【答案】1
23.【答案】34
24.【答案】-2
25.【答案】解:,
(2)-(1)得:
y-x=2(4),
(2)×3-(3)×2得:
5x+2y=-3(5),
(4)×2+(5)得:
x=-1,
∴y=1,z=3,
∴原方程组的解为:.
26.【答案】解:依题可设x=m,y=3m,z=5m,
∴x+y+z=m+3m+5m=18,
∴m=2,
∴x=2,y=6,z=10.
∴原方程组的解为:.
27.【答案】解:原式可变形为:
,
(1)×3+(2)×2得:
19x=78,
∴x=,
将x=代入(1)得:
y=-,
∴原方程组的解为:.
28.【答案】解:②-①×2得
(a-4)x=0
所以,当a-4=0,即a=4时,x可取一切数.与之相对应的y 的值也是无数多个,即a=4时,原方程组有无数多组解.
当a-4≠0,即a≠4时, ,即x只能取0,与之相对应的y的值为2,即当a≠4时,方程组只有一组解
29.【答案】解:设甲公司每周的工作效率为 ,乙公司每周的工作效率为 .
由题意,得 解得
即家公司单独完成需10周,乙公司单独完成需15周.
设请甲公司工作一周需花费工钱 万元,请乙公司工作一周需花费工钱 万元.
由题意,得
解得
所以请甲公司单独完成需花费工钱 (万元),
请乙公司单独完成需花费工钱 (万元)
答:从节约开支的角度来考虑,小颖家应该选乙公司.
30.【答案】解:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,
根据题意得:
解得: .
答:今年妹妹6岁,哥哥10岁.
31.【答案】解:设应安排x人生产螺栓,有y人生产螺母.
由题意,得
解这个方程组得:
答:应安排25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套。
32.【答案】解:将 代入方程组中的4x by= 2得: 12+b= 2,即b=10;
将 代入方程组中的ax+5y=15得:5a+20=15,即a= 1;
当a= 1,b=10时,a2019+( b)2020=-1+1=0.
33.【答案】(1)解:由题意得, ,
解得 ;
(2)解: (元)
答:小红家七月份应缴水费64.25元.
(3)解:设小聪家四月份的用水量为x,则五月份的用水量为 .
∵ ,
∴ ,即四月份的用水量低于10m.
①当 时,缴费总量为:
,
解得 不合题意,舍去.
②当 时,缴费总量为:
,
解得 ,此时 ,符合题意.
答:小聪家四月份的用水量为 ,五月份的用水量为 .
34.【答案】(1)解:,
(2)解:联立得: ,
解得: ,
代入得:﹣5﹣10﹣5m+9=0,
解得:m=﹣
(3)解:和m无关,所以m的系数为0,即x=0,
代入方程得:﹣2y+9=0,即y=4.5,
则其公共解为
35.【答案】(1)解:由题意得:,
解得:,
答:图甲中a与b的值分别为:60、40;
(2)64;38;
36.【答案】(1)解:设甲工程队每天修路x米,乙工程队每天修路y米.
依题意,得:
解之得:
答:甲、乙两工程队每天分别修路200米和100米.
(2)解:设甲工程队最多可以调走m人.
依题意,得:
8×(200+100)+(25-8)×100+(25-8)×(200÷20)×(20-m) =6140.
解之得:m=8.
答:甲工程队最多可以调走8人.
37.【答案】(1)解:①设小明购买了A书籍x本、B书籍y本,
则由题意得:
得:
答:小明购买了A书籍8本、B书籍12本
②花费最少的方案为:购买8套书籍和4本B书籍,即:8×70+4×30=680(元)
答:至少需要花费680元
(2)解:设单独购买A书籍a本,B书籍b本,整套购买c套,
则50a+30b+70c=600①
c=8-a②
将②代入①,整理得:a= b-2,
∵a,b均为正整数,且a≤8,
∴ , ,
∴有三种购买方案:
方案一:单买A书籍1本,单买B书籍2本,整套买7套,
共得A书籍8本,B书籍9本;
方案二:单买A书籍4本,单买B书籍4本,整套买4套,
共得A书籍8本,B书籍8本;
方案三:单买A书籍7本,单买B书籍6本,整套买1套,
共得A书籍8本,B书籍7本。
其中方案一最划算
38.【答案】(1)2
(2)0;-8
(3)解:设点P表示的数为y,分四种情况:
①P为【A,B】的好点.
由题意,得 ,
解得y=20,
t= ÷2=10(秒);
②A为【B,P】的好点.
由题意,得 =2[y-(-20)],
解得y=10,
t= ÷2=15(秒);
③P为【B,A】的好点.
由题意,得40-y=2[y-(-20)],
解得y=0,
t= ÷2=20(秒);
④A为【P,B】的好点
由题意得 =2[40-(-20)]
解得y=100(舍).
⑤B为【A,P】的好点;
30=2t,
t=15.
综上可知,当t为10秒、15秒或20秒,P、A和B中恰有一个点为其余两点的好点.
39.【答案】(1)解:设两个排水口每分钟的抽水量为 吨, 吨
依题意得 ,解得
答:两个排水口每分钟的抽水两为 吨, 吨。
(2)解:设水池的水量为 ,泉水每分钟的流量为 ,抽水机每分钟的抽水量为
两式相减消去 ,得
即抽水机每分钟的抽水量是泉水流量的 倍。
(3)解:设 台抽水机用 分钟把水抽完,则有
由(2)得
即
40.【答案】(1)∵b=a+1,c=b+1.
∴c=a+2,
由题意,得3a+a+1=a+2,
解得a= ,
∴c=a+2= ;
(2)当a= 时, x+ y= ,
化简得,x+3y=5,
∴符合题意的整数解是: , , ;
(3)由题意,得ax+(a+1)y=a+2,
整理得,a(x+y﹣1)=2﹣y①,
∵x、y均为正整数,
∴x+y﹣1是正整数,
∵a是正整数,
∴2﹣y是正整数,
∴y=1,
把y=1代入①得,ax=1,
∴a=1,
此时,a=1,b=2,c=3,方程的正整数解是 .
1 / 1
点击下载
同课章节目录
第一章 平行线
1.1平行线
1.2同位角、内错角、同旁内角
1.3平行线的判定
1.4平行线的性质
1.5图形的平移
第二章 二元一次方程组
2.1 二元一次方程
2.2 二元一次方程组
2.3 解二元一次方程组
2.4 二元一次方程组的应用
2.5 三元一次方程组及其解法(选学)
第三章 整式的乘除
3.1 同底数幂的乘法
3.2 单项式的乘法
3.3 多项式的乘法
3.4 乘法公式
3.5 整式的化简
3.6 同底数幂的除法
3.7 整式的除法
第四章 因式分解
4.1 因式分解
4.2 提取公因式
4.3 用乘法公式分解因式
第五章 分式
5.1 分式
5.2分式的基本性质
5.3 分式的乘除
5.4 分式的加减
5.5 分式方程
第六章 数据与统计图表
6.1数据的收集与整理
6.2条形统计图和折线统计图
6.3扇形统计图
6.4频数与频率
6.5频数直方图
点击下载
VIP下载