5.3 多项式的乘法[下学期]

文档属性

名称 5.3 多项式的乘法[下学期]
格式 rar
文件大小 1.0MB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2006-04-27 13:21:00

图片预览

文档简介

课件14张PPT。课前练习(1)(-x)3·(-x)3·(-x)5=______;
(2) (x2)4=_______;
(3) (x3y5)4=______; (4)(xy)3·(xy)4·(xy)5=______;
(5) (-3x3y)(-5x4y2z4)=______;
(6)-3ab2(-4a+3ab-2)
=______________-x11x8x12y20x12y1215x7y3z412a2b2-9a2b3+6ab2某一个养殖专业户,原有一长为 a米,宽为b米的长方形养殖场,为扩大养殖场,长增加m米,宽增加n米,求扩大后的养殖场面积为多少平方米?nmba(a+m)(b+n)abanbmmnabanbmmn+++=5.3多项式的乘法
(a+b)(m+n)=am1234多项式的乘法+an+bm+bn多项式的乘法法则 多项式与多项式相乘, 先用一个多项式的每一项乘以另一个多项式的每一项, 再把所得的积相加.(1) (x+2y)(5a+3b) ;(2) (2x–3)(x+4) ;解:(x+2y)(5a+3b) ==解:(2x–3)(x+4)2x2 +8x –3x –12=2x2 +5x例1 计算:=–12x ·5a +x ·3b +2y ·5a +2y ·3b5ax+3bx+10ay+6by(3) (3x+y)(x–2y) ;
解:(3x+y)(x–2y)=3x2 –6xy +xy –2y2=3x2 –5xy –2y2 练习一、计算:(1) (2n+6)(n–3);(2) (2x+3)(3x–1);(3) (2a+3)(2a–3);(4) (2x+5)(2x+5).例2 计算:(1) (x+y)(x–y);(2) (x+y)(x2–xy+y2)解:(1) (x+y)(x–y)=x2 (2) (x+y)(x2–xy+y2)
=x3 =x3 =x2–xy+xy–y2
–y2.
–x2y+xy2+x2y–xy2+y3
+y3注意: 多项式乘以多项式,展开后项数很有规律,在合并同类项之前,展开式的项数恰好等于两个多项式的项数的积。例3,先化简,再求值:
(2a-3)(3a+1)-6a(a-4),其中a=例4,计算:
(3x-5)(2x+3)-(2x-1)(x+1)练习二、计算:(1) (2a–3b)(a+5b) ;(2) (xy–z)(2xy+z) ;(3) (x–1)(x2+x+1) ;(4) (2a+b)2;(5) (3a–2)(a–1)–(a+1)(a+2) ;(6) (x+y)(2x–y)(3x+2y).1.(x+1)(x+2)=________
2.(x+3)(x+4)=________
3.(x+6)(x+5)=________
4.(x-3)(x-4)=_________
5.(x-7)(x-5)=_________
6.(x+4)(x-3)=_________
7.(x+5)(x-7)=_________填一填你发现了什么规律?能用一个公式表示吗?X2+3x+2X2+7x+12X2+11x+30X2-7x+12X2-12x+35X2+x-12X2-2x-35能力拓展1.已知A=x2+x+1,B=x+p-1,化简
AB-pA.并求当x=-1时它的值.2.计算(x3+2x2-3x-5)(2x3-3x2+x-2)时,若不展开,求出x4项的系数.3.若(x3+mx+n)(x2-5x+3)展开后不含x3和x2项,试求m,n的值.再见