2023年浙教版七下数学第一章平行线章节复习(学生版+教师版)

文档属性

名称 2023年浙教版七下数学第一章平行线章节复习(学生版+教师版)
格式 zip
文件大小 2.7MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-02-08 07:03:41

文档简介

中小学教育资源及组卷应用平台
2023年浙教版七下数学第一章平行线章节复习(教师版)
一、知识梳理
知识点1:平行线的定义
1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.
注意:
(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;
(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.
(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.
知识点2:同位角、内错角和同旁内角
两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线的同一侧,直线、的同一方,这样位置的一对角就是同位角。图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线的两旁,直线、的两方,这样位置的一对角就是内错角。图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线的同一侧,直线、的两方,这样位置的一对角就是同旁内角。图中的同旁内角还有∠3与∠6。
知识点3:平行公理及推论
1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
记作:如果 a∥b,a∥c,那么a∥c
注意:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)“平行公理的推论”也叫平行线的传递性
知识点4:平行线判定
判定方法 (1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简单说成: 同位角相等,两直线平行。
几何语言:
∵∠1=∠2
∴ AB∥CD(同位角相等,两直线平行)
判定方法 (2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行。
∵∠2=∠3
∴ AB∥CD(内错角相等,两直线平行)
判定方法 (3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简单说成: 同旁内角互补,两直线平行。
∵∠4+∠2=180°
∴ AB∥CD(同旁内角互补,两直线平行)
知识点5:平行线性质
性质(1):两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
几何语言:∵a∥b
∴∠1=∠5(两直线平行,同位角相等)
性质(2):两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
几何语言:∵a∥b
∴∠3=∠5(两直线平行,内错角相等)
性质(3):两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
几何语言:∵a∥b
∴∠3+∠6=180°(两直线平行,同旁内角互补)
知识点6:平移
1.定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种
移动,叫做平移变换,简称平移。
2.平移三要素:图形的原来位置、平移的方向、平移的距离。
3. 平移的性质
(1)对应点的连线平行(或共线)且相等
(2)对应线段平行(或共线)且相等;
(3)对应角相等,对应角两边分别平行,且方向一致。
二、典例分析
例1、下列说法中正确的是( C )
A.两平行线被第三条直线所截得的同位角的平分线互相垂直
B.两直线被第三条直线所截得的同旁内角互补
C.两平行线被第三条直线所截得的同旁内角的平分线互相垂直
D.两直线被第三条直线所截得的同位角相等
变式1、下列说法中错误的个数是( C )
(1)过一点有且只有一条直线与已知直线平行.
(2)在同一平面内,两条直线的位置关系只有相交、平行两种.
(3)不相交的两条直线叫做平行线.
(4)相等的角是对顶角.
A.1个 B.2个 C.3个 D.4个
变式2、下列叙述中,正确的是( C )
A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直
B.不相交的两条直线叫平行线
C.两条直线的铁轨是平行的
D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角
变式3、直线a、b、c在同一平面内,
(1)如果a⊥b,b⊥c,那么a∥c;
(2)如果a∥b,b∥c,c∥d,那么a∥d;
(3)如果a∥b,b⊥c,那么a⊥c;
(4)如果a与b相交,b与c相交,那么a与c相交.
在上述四种说法中,正确的个数为( C )
A.1个 B.2个 C.3个 D.4个
例2、如图,由AD∥BC可以得到的是( C )
A.∠1=∠2 B.∠3+∠4=90°
C.∠DAB+∠ABC=180° D.∠ABC+∠BCD=180°
变式1、如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是( C )
A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC
变式2、在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是( A )
A. B.
C. D.
例3、如图,b∥c,a⊥b,∠1=130°,则∠2等于( B )
A.30° B.40° C.50° D.60°
变式1、如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是( B )
A.80° B.65° C.45° D.30°
变式2、如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为( A )
A.28° B.29° C.30° D.32°
变式3、已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于(A)
A.25° B.35° C.40° D.45°
例4、如图,将一个长方形纸片ABCD沿着EF折叠,使C,D两点分别落在点C′,D′处,若∠BFE=70°,则∠AED′的度数为( B )
A.70° B.40° C.30° D.20°
变式1、把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为 640  .
变式2、如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为 150  .
变式3、如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为( D )
A.120° B.108° C.126° D.114°
变式4、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是 200  .
例5、如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:∠2+∠3﹣∠1=180°.
变式1、如图,已知AD∥BE,点C是直线FG上的动点,若在点C的移动过程中,存在某时刻使得∠ACB=45°,∠DAC=22°,则∠EBC的度数为23°或67° .
变式2、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为55°.
变式3、如图,BE∥CF,则∠A+∠B+∠C+∠D= 180 度.
变式4、如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数是 200  .
变式5、如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是 ①④ (只填序号)
例6、已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.
求证:EF∥CD.
证明:
∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90° (   )
∴DG∥AC (   )
∴∠2=    (   )
∵∠1=∠2 (已知)
∴∠1=∠DCA(等量代换)
∴EF∥CD (   )
变式1、如图,∠AGF=∠ABC,∠1+∠2=180°,
(1)求证;BF∥DE.
(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.
【解答】(1)证明:∵∠AGF=∠ABC,
∴BC∥GF,
∴∠AFG=∠C.
∵∠1+∠2=180°,∠CDE+∠2=180°,
∴∠1=∠CDE.
∵∠CED=180°﹣∠C﹣∠CDE,∠CFB=180°﹣∠AFD﹣∠1,
∴∠CED=∠CFB,
∴BF∥DE.
(2)解:∵DE⊥AC,BF∥DE,
∴∠AFB=∠AED=90°,
∵∠1+∠2=180°,∠2=150°,
∴∠1=30°.
∵∠AFB=∠AFG+∠1=90°
∴∠AFG=60°.
变式2、如图,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠ACB.
【解答】证明:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠4,
∴EF∥AB(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
∴∠AED=∠ACB(两直线平行,同位角相等).
变式3、已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.
【解答】证明:∵EF⊥AC,DB⊥AC,
∴EF∥DM,
∴∠2=∠CDM,
∵∠1=∠2,
∴∠1=∠CDM,
∴MN∥CD,
∴∠C=∠AMN,
∵∠3=∠C,
∴∠3=∠AMN,
∴AB∥MN.
变式4、如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
【解答】解:(1)∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
(2)∵DC∥FP,DC∥AB,∠DEF=28°,
∴∠DEF=∠EFP=28°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+28°=108°,
又∵FH平分∠EFG,
∴∠GFH=∠GFE=54°,
∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°
变式5、(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?
解:过点E作EF∥AB①,如图(b),
则∠ABE+∠BEF=180°,(   )
因为∠ABE+∠BED+∠EDC=360°(   )
所以∠FED+∠EDC=   ° (等式的性质)
所以 FE∥CD②(    )
由①、②得AB∥CD (    ).
(2)如图(c),当∠1、∠2、∠3满足条件    时,有AB∥CD.
(3)如图(d),当∠B、∠E、∠F、∠D满足条件   时,有AB∥CD.
例7、已知AB∥CD,解决下列问题:
(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.
(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.
(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).
【解答】解:(1)如图①,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠ABE+∠BEF=180°,∠CDE+∠DEF=180°,
∴∠ABE+∠BED+∠CDE=360°,
又∵∠BED=100°,
∴∠ABE+∠CDE=360°﹣100°=260°,
又∵BP、DP分别平分∠ABE、∠CDE,
∴∠PBE+∠PDE=(∠ABE+∠CDE)=×260°=130°,
∴∠P=360°﹣130°﹣100°=130°;
(2)3∠P+∠BED=360°;
如图②,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠ABE+∠BEF=180°,∠CDE+∠DEF=180°,
∴∠ABE+∠BED+∠CDE=360°,
∴∠ABE+∠CDE=360°﹣∠BED,
又∵∠ABP=∠ABE,∠CDP=∠CDE,
∴∠PBE+∠PDE=(∠ABE+∠CDE)=×(360°﹣∠BED)=240°﹣∠BED,
∴∠P=360°﹣∠BED﹣(240°﹣∠BED)=120°﹣∠BED,
即3∠P+∠BED=360°;
(3)∠P=.
如图③,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
同理可得,∠ABE+∠CDE=360°﹣∠BED=360°﹣m°,
又∵∠ABP=∠ABE,∠CDP=∠CDE,
∴∠PBE+∠PDE=(∠ABE+∠CDE)=(360°﹣m°),
∴四边形PDEB中,∠P=360°﹣(360°﹣m°)﹣m°=.
变式1、已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为   ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=   .
变式2、已知:如图1直线AB、CD被直线MN所截,∠1=∠2.
(1)求证:AB∥CD;
(2)如图2,点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出结论;
(3)如图3,在(2)的条件下,过P点作PH∥EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:4,求∠PHQ的度数.
【解答】解:(1)如图1,∵AB∥CD,
∴∠END=∠EFB,
∵∠EFB是△MEF的外角,
∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,
故答案为:∠E=∠END﹣∠BME;
(2)如图2,∵AB∥CD,
∴∠CNP=∠NGB,
∵∠NPM是△GPM的外角,
∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,
∵MQ平分∠BME,PN平分∠CNE,
∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,
∵AB∥CD,
∴∠MFE=∠CNE=2∠CNP,
∵△EFM中,∠E+∠FME+∠MFE=180°,
∴∠E+2∠PMA+2∠CNP=180°,
即∠E+2(∠PMA+∠CNP)=180°,
∴∠E+2∠NPM=180°;
(3)如图3,延长AB交DE于G,延长CD交BF于H,
∵AB∥CD,
∴∠CDG=∠AGE,
∵∠ABE是△BEG的外角,
∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①
∵∠ABM=∠MBE,∠CDN=∠NDE,
∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,
∵∠CHB是△DFH的外角,
∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②
由①代入②,可得∠F=∠E,即. 故答案为:.
变式3、已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP
(1)如图1,求证:MN∥PQ;
(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;
(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.
【解答】解:(1)过C作CE∥MN,
∴∠1=∠MAC,
∵∠2=∠ACB﹣∠1,
∴∠2=∠ACB﹣∠MAC,
∵∠ACB﹣∠MAC=∠CBP,
∴∠2=∠CBP,
∴CE∥PQ,
∴MN∥PQ;
(2)过B作BR∥AG,
∵AG∥CH,
∴BR∥HF,
∴∠BEG=∠EBR,∠RBF+∠CFB=180°,
∵∠EBF=90°,
∴∠BEG=∠EBR=90°﹣∠RBF,
∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),
∴∠CFB﹣∠BEG=90°;
(3)过E作ES∥MN,
∵MN∥PQ,
∴ES∥PQ,
∴∠NAE=∠AES,∠QBE=∠EBC,
∵BD和AE分别平分∠CBP和∠CAN,
∴∠NAE=∠EAC,∠CBD=∠DBP,
∴∠CAE=∠AES,
∵∠EBD=90°,
∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,
∴∠QBE=∠EBC,
∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,
∵∠ACB=60°,
∴∠AEB=150°,
∴∠BEG=30°,
∵∠CFB﹣∠BEG=90°,
∴∠CFB=120°.
例8、课题学行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC.
求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,所以∠B=∠EAB,∠C=   .
又因为∠EAB+∠BAC+∠DAC=180°,
所以∠B+∠BAC+∠C=180°
解题反思:
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
【解答】解:(1)∵ED∥BC,
∴∠C=∠DAE,
故答案为:∠DAE;
(2)过C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠D=∠FCD,
∵CF∥AB,
∴∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°,
(3)如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
变式1、已知:E,F分别为AB,CD上任意一点.M,N为AB和CD之间任意两点.连接EM,MN,NF,∠AEM=∠DFN=a,∠EMN=∠MNF=b.
(1)如图1,若a=b,求证:ME∥NF,AB∥CD;
(2)当a≠b时
①如图2,求证:AB∥CD;
②如图3,分别过点E,点N引射线EP,NP.EP交MN于Q,交NP于P,∠PEM=∠AEM,∠MNP=∠FNP.∠BEP和∠NFD两角的角平分线交于点I.当∠P=∠I时,a和b的数量关系为:   (用含有b的式子表示a).
【解答】证明:(1)如图1,∵∠EMN=∠MNF=b,
∴EM∥NF,
∵∠AEM=∠NFD=a,且a=b,
∴∠AEM=∠EMN=∠MNF=∠NFD,
∴AB∥MN,MN∥CD,
∴AB∥CD,
(2)①如图2,延长FN交AB于G,
∵ME∥FN,
∴∠AEM=∠AGF,
∵∠AEM=∠NFD,
∴∠AGF=∠NFD,
∴AG∥CD,
即AB∥CD;
②如图3,延长EN交CD于G,
∵∠AEM=a,∠PEM=∠AEM=a,
∴∠PEB=180°﹣∠AEP=180°﹣a﹣a=180°﹣a,
∵EN平分∠PEB,
∴∠BED===90°﹣,
∵PI平分∠NFD,∠NFD=a,
∴∠DFI=a,
∵AB∥CD,
∴∠BED=∠IDF=90°﹣,
△FTD中,∠EIF=∠DFI+∠IDF=a+90°﹣,
∵∠MNP=,∠MNF=b,
∴∠MNP==b,
在△EMQ和△PQN中,∵∠M+∠MEQ=∠P+∠PNQ,
∴b+a=∠P+b,
∴∠P=b+a﹣b,
∵∠P=∠EIF,
∴b+a﹣b=a+90°﹣,
12b+6a﹣4b=6a+1080﹣9a,
8b=1080﹣9a,
9a=1080﹣8b,
a=;
故答案为:a=.
变式2、已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.
(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;
(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME的度数.
(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.
【解答】解:(1)如图1所示,∵AB∥CD,
∴∠AMN=∠MND=45°,
∵∠ENF=∠ENC,
∴∠ENM=(180°﹣45°)=67.5°,
又∵∠E=90°,
∴∠EMN=22.5°,
∴∠AME=45°﹣22.5°=22.5°;
(2)如图2所示,设ME与FN交于点H,AB与FN交于点G,
∵AB∥CD,
∴∠AGN=∠FND=60°,
∵∠ENF=∠ENC,
∴∠ENF=(180°﹣60°)=60°,
又∵∠E=90°,
∴∠EHN=30°=∠GHM,
∴∠AME=∠AGN﹣∠GHM=60°﹣30°=30°;
(3)由AB∥CD,∠E=90°,可得∠CNE=90°﹣∠AME,
由∠ENF=∠ENC,可得∠FND=180°﹣2∠CNE=180°﹣2(90°﹣∠AME)=2∠AME,
故∠FND与∠AME之间的数量关系为:∠FND=2∠AME.
变式3、已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系   ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
【解答】解:(1)如图1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2023年浙教版七下数学第一章平行线章节复习(学生版)
一、知识梳理
知识点1:平行线的定义
1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.
注意:
(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;
(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.
(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.
知识点2:同位角、内错角和同旁内角
两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线的同一侧,直线、的同一方,这样位置的一对角就是同位角。图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线的两旁,直线、的两方,这样位置的一对角就是内错角。图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线的同一侧,直线、的两方,这样位置的一对角就是同旁内角。图中的同旁内角还有∠3与∠6。
知识点3:平行公理及推论
1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
记作:如果 a∥b,a∥c,那么a∥c
注意:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)“平行公理的推论”也叫平行线的传递性
知识点4:平行线判定
判定方法 (1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简单说成: 同位角相等,两直线平行。
几何语言:
∵∠1=∠2
∴ AB∥CD(同位角相等,两直线平行)
判定方法 (2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行。
∵∠2=∠3
∴ AB∥CD(内错角相等,两直线平行)
判定方法 (3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简单说成: 同旁内角互补,两直线平行。
∵∠4+∠2=180°
∴ AB∥CD(同旁内角互补,两直线平行)
知识点5:平行线性质
性质(1):两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
几何语言:∵a∥b
∴∠1=∠5(两直线平行,同位角相等)
性质(2):两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
几何语言:∵a∥b
∴∠3=∠5(两直线平行,内错角相等)
性质(3):两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
几何语言:∵a∥b
∴∠3+∠6=180°(两直线平行,同旁内角互补)
知识点6:平移
1.定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种
移动,叫做平移变换,简称平移。
2.平移三要素:图形的原来位置、平移的方向、平移的距离。
3. 平移的性质
(1)对应点的连线平行(或共线)且相等
(2)对应线段平行(或共线)且相等;
(3)对应角相等,对应角两边分别平行,且方向一致。
二、典例分析
例1、下列说法中正确的是(  )
A.两平行线被第三条直线所截得的同位角的平分线互相垂直
B.两直线被第三条直线所截得的同旁内角互补
C.两平行线被第三条直线所截得的同旁内角的平分线互相垂直
D.两直线被第三条直线所截得的同位角相等
变式1、下列说法中错误的个数是(  )
(1)过一点有且只有一条直线与已知直线平行.
(2)在同一平面内,两条直线的位置关系只有相交、平行两种.
(3)不相交的两条直线叫做平行线.
(4)相等的角是对顶角.
A.1个 B.2个 C.3个 D.4个
变式2、下列叙述中,正确的是(  )
A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直
B.不相交的两条直线叫平行线
C.两条直线的铁轨是平行的
D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角
变式3、直线a、b、c在同一平面内,
(1)如果a⊥b,b⊥c,那么a∥c;
(2)如果a∥b,b∥c,c∥d,那么a∥d;
(3)如果a∥b,b⊥c,那么a⊥c;
(4)如果a与b相交,b与c相交,那么a与c相交.
在上述四种说法中,正确的个数为(  )
A.1个 B.2个 C.3个 D.4个
例2、如图,由AD∥BC可以得到的是(  )
A.∠1=∠2 B.∠3+∠4=90°
C.∠DAB+∠ABC=180° D.∠ABC+∠BCD=180°
变式1、如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是(  )
A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC
变式2、在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是(  )
A. B.
C. D.
例3、如图,b∥c,a⊥b,∠1=130°,则∠2等于(  )
A.30° B.40° C.50° D.60°
变式1、如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是(  )
A.80° B.65° C.45° D.30°
变式2、如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为(  )
A.28° B.29° C.30° D.32°
变式3、已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于(  )
A.25° B.35° C.40° D.45°
例4、如图,将一个长方形纸片ABCD沿着EF折叠,使C,D两点分别落在点C′,D′处,若∠BFE=70°,则∠AED′的度数为(  )
A.70° B.40° C.30° D.20°
变式1、把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为   .
变式2、如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为   .
变式3、如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为(  )
A.120° B.108° C.126° D.114°
变式4、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是   .
例5、如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:   .
变式1、如图,已知AD∥BE,点C是直线FG上的动点,若在点C的移动过程中,存在某时刻使得∠ACB=45°,∠DAC=22°,则∠EBC的度数为   .
变式2、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为   .
变式3、如图,BE∥CF,则∠A+∠B+∠C+∠D=   度.
变式4、如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数是   .
变式5、如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是   (只填序号)
例6、已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.
求证:EF∥CD.
证明:
∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90° (   )
∴DG∥AC (   )
∴∠2=    (   )
∵∠1=∠2 (已知)
∴∠1=∠DCA(等量代换)
∴EF∥CD (   )
变式1、如图,∠AGF=∠ABC,∠1+∠2=180°,
(1)求证;BF∥DE.
(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.
变式2、如图,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠ACB.
变式3、已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.
变式4、如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
变式5、(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?
解:过点E作EF∥AB①,如图(b),
则∠ABE+∠BEF=180°,(   )
因为∠ABE+∠BED+∠EDC=360°(   )
所以∠FED+∠EDC=   ° (等式的性质)
所以 FE∥CD②(    )
由①、②得AB∥CD (    ).
(2)如图(c),当∠1、∠2、∠3满足条件    时,有AB∥CD.
(3)如图(d),当∠B、∠E、∠F、∠D满足条件   时,有AB∥CD.
例7、已知AB∥CD,解决下列问题:
(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.
(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.
(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).
变式1、已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为   ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=   .
变式2、已知:如图1直线AB、CD被直线MN所截,∠1=∠2.
(1)求证:AB∥CD;
(2)如图2,点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出结论;
(3)如图3,在(2)的条件下,过P点作PH∥EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:4,求∠PHQ的度数.
变式3、已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP
(1)如图1,求证:MN∥PQ;
(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;
(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.
例8、课题学行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC.
求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,所以∠B=∠EAB,∠C=   .
又因为∠EAB+∠BAC+∠DAC=180°,
所以∠B+∠BAC+∠C=180°
解题反思:
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
变式1、已知:E,F分别为AB,CD上任意一点.M,N为AB和CD之间任意两点.连接EM,MN,NF,∠AEM=∠DFN=a,∠EMN=∠MNF=b.
(1)如图1,若a=b,求证:ME∥NF,AB∥CD;
(2)当a≠b时
①如图2,求证:AB∥CD;
②如图3,分别过点E,点N引射线EP,NP.EP交MN于Q,交NP于P,∠PEM=∠AEM,∠MNP=∠FNP.∠BEP和∠NFD两角的角平分线交于点I.当∠P=∠I时,a和b的数量关系为:   (用含有b的式子表示a).
变式2、已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.
(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;
(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME的度数.
(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.
变式3、已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系   ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)