课 题 1.1平行线
课时安排 1
教学目标 1、进一步认识平行线的的概念。2、用符号表示两条直线互相平行。3、会用两种方法作过直线外一点画这条直线的平行线。4、了解过直线外一点有且只有一条直线平行于已知直线。
重点 平行线的画法和表示法。
难点 用推平行线画平行线。
教具准备 多媒体,投影仪
教 学 过 程
(一)创设情境,导入新课 师:前面我们学过相交线,那么相交线有什么特点? 生1:只有一个公共点。 师:那没有公共点的两条直线,在日常生活中你见过吗? 生2—生5:两条铁轨、双盏日光灯、双杠、地面的两条铜条…… 师:很好,这些都给我们有力的说明 ( http: / / www.21cnjy.com ),我们把这些大小不同,粗细不等的线、条、管用数学上的直线来表示,那就是生活中存在不相交的直线,我们把它们称为平行线(给出课题)。(二)合作交流,探求新知 1、概念形成 师:不相交的两条直线叫平行线,你能找出下面立方体中的平行线吗?D C A D′ B C′ A′ B′ 生6—生8:有各种不同回答,请作出相应的鼓励和质疑。 师:大家找出的两条直线都有共同点, ( http: / / www.21cnjy.com )不相交,好,那是否不相交的直线叫平行线呢?AA′和B′C′是否相交?他们是平行线?请按学习小组讨论。 课后反馈
教 学 过 程
生9—生11:针对不同答案作出一些评价(激励,质疑)。 师:平行线还有一个前提,“在同一平面内”,即在同一平面内,不相交的两条直线叫平行线。 利用立方体解释,“同一平面”的概念,再介绍平行的符号、记法和读法。 2、反馈练习:书本P191的做一做。 3、平行线的画法。 师:我们已清楚平行线的概念、符号、记法和读法,下面我们一起来学习平行线的画法。 师:介绍①垂直法作平行线,然后让学生仿练一次,每个学习小组同学互相交流仿练情况。②推平行线法:用四个字归纳一“落”二“靠”三“推”四“画”。 a a a b a 让学生边画边念,再回顾垂直法,也可以用推平行线法,只是将三角板的直角朝上即可。 师生共同得出:经过直线外一点,有且只有一条直线平行于已知直线。 4、巩固练习:①书本课内练习 ②书本作业题(三)小结回顾,反思提高 师:本堂课你有什么收获?(根据学生的回答作点评) 1、平行线的概念。 2、平行线的注意点。 3、过直线外一点作已知直线的平行线的2种方法。(四)作业布置:作业本1.1。
教后随笔 会表示两条线的平行的关系,会画平行线,在线段平行时强调线段所在的直线平行。
指导教师意见 签字: 年 月 日
学校抽查意见 签字: 年 月 日1.1平行线
教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.
重点:探索和掌握平行公理及其推论.
难点:对平行线本质属性的理解,用几何语言描述图形的性质.
教学过程
一、创设问题情境
1.复习提问:两条直线相交有几个交点 相交的两条直线有什么特殊的位置关系
学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗
2.教师演示教具.
顺时针转动木条b两圈,让学生思考:把a、b ( http: / / www.21cnjy.com )想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化 在这个过程中,有没有直线b与c木相交的位置
3.教师组织学生交流并形成共识.
转动b时,直线b与c的交点 ( http: / / www.21cnjy.com )从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.
( http: / / www.21cnjy.com )
二、平行线定义表示法
1.结合演示的结论,师生用数学语言描述 ( http: / / www.21cnjy.com )平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.
直线a与b是平行线,记作“∥”,这里“∥”是平行符号.
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.
2.同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.
三、画图、观察、归纳概括平行公理及平行公理推论
1.在转动教具木条b的过程中,有几个位置能使b与a平行
本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行.
2.用直线和三角尺画平行线.
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条
(2)过点C画直线a的平行线,它与过点B的平行线平行吗
3.通过观察画图、归纳平行公理及推论.
(1)由学生对照垂线的第一性质说出画图所得的结论.
(2)在学生充分交流后,教师板书.
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
(3)比较平行公理和垂线的第一条性质.
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
4.归纳平行公理推论.
(1)学生直观判定过B点、C点的a的平行线b、c是互相平行.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)学生用三角尺与直尺用平推方验证b∥c.
(4)师生用数学语言表达这个结论,教师板书.
结果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c.
(5)简单应用.
练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗 请说明理由.
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.
四、作业:
1.课内练习与作业题A、B组
2. 作业布置:作业本1.1。