2014-2015学年新浙教版七年级数学下学期备课教案:1-3 平行线的判定(2课时)

文档属性

名称 2014-2015学年新浙教版七年级数学下学期备课教案:1-3 平行线的判定(2课时)
格式 zip
文件大小 40.3KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2015-03-10 21:36:41

文档简介

1.3平行线的判定(2)
〖教学目标〗
1、使学生掌握平行线的第二、三个判定方法.
2、能运用所学过的平行线的判定方法,进行简单的推理和计算.
3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法.
〖教学重点与难点〗
教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用.
教学难点:问题的思考和推理过程是难点.
〖教学过程〗
一、从学生原有认知结构提出问题
如图,问平行的条件是什么
在学生回答的基础上再问:三线八角分为三类角,
当同位角相等时,两直线平行,
那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢 这就是我们今天要学习的问题.(板书课题)
学生会跃跃欲试,动脑思考.
教师引导学生:将内错角或同旁内角设法转化为利用同位角相等.
二、运用特殊和一般的关系,发现新的判定方法
1.通过合作学习,提出猜想.
①若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?
你可以从以下几个方面考虑:
⑴我们已经有怎样的判定两直线平行的方法?
⑵有∠3=∠4,能得出有一对同位角相等吗?
由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二:
两条直线被第三条直线所截,如果内错角相等,则两条直线平行.
教师并强调几何语言的表述方法
∵∠3=∠4
∴AB∥CD(内错角相等,两条直线平行)
然后,完成“做一做”
∠1=121°, ∠2=120°,∠3=120°。
说出其中的平行线,并说明理由。
②若图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行吗?
你可以由类似的方法得到正确的结论吗?
由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三:
两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行.
教师并强调几何语言的表述方法
∵∠2+∠4=180°
∴AB∥CD(同旁内角互补,两条直线平行)
当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行.
2.例题教学,体验新知
例2.如图,∠C+∠A=∠AEC。判断AB与CD是否平行,并说明理由。
分析:延长CE,交AB于点F,则直线CD,AB被直线CF所截。这样,
我们可以通过判断内错角∠C和∠AFC是否相等,来判定AB与CD是否平行。
板书解答过程。
提问:能否用不一样的方法来判定AB与CD是否平行?
提示:连结AC。
例3 如图∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,
那么AB∥CD ,AD∥BC.请说明理由。
先让学生思考,以小组为单位进行讨论,然后派 ( http: / / www.21cnjy.com )出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程
三、应用举例,变式练习(讲与练结合方式进行教学)
1、课内练习1、2
2、如图
⑴∠1=∠A,则GC∥AB,依据是 ;
⑵∠3=∠B,则EF∥AB,依据是 ;
⑶∠2+∠A=180°,则DC∥AB,依据是 ;
⑷∠1=∠4,则GC∥EF,依据是 ;
⑸∠C+∠B=180°,则GC∥AB,依据是 ;
⑹∠4=∠A,则EF∥AB,依据是 ;
3、探究活动:有一条纸带如图所示,如果工具只有圆规,
怎样检验纸带的两条边沿是否平行?如果没有工具呢?
请说出你的方法和依据。
提示:可尝试用折叠的方法,与你的同伴交流。
四、课堂小结,梳理知识
1.先由教师问学生:到目前为止学习了哪些判定两直线平行的方法 在选择方法时应注意什么问题
2.在学生回答的基础上,教师总结指出:
(1)学习了3种判定方法.
(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法.
(3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择.
五、布置作业
1、选用课本题.
2、作业本.
3、同步练.
六、教学反思:
本节课的教学思路:
复习同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行。
1
2
3
E
F
4
A
B
C
D
1
3
2
E
F
G
A
B
C
D
1
3
2
H
E
F
4
A
B
C
D
1
3
2
A
C
D
B
E
F
A
C
D
B
E
D
A
B
C
A
B
F
E
G
D
C
1
2
3
4
引出
引出1.3平行线的判定(1)
一、教学目标
1、理解平行线的判定方法1:同位角相等,两直线平行;
2、学会用“同位角相等,两直线平行”进行简单的几何推理;
3、体会用实验的方法得出几何性质(规律)的重要性与合理性.
二、教学重点与难点
教学重点:是“同位角相等,两直线平行”的判定方法.
教学难点:是例1的推理过程的正确表达.
三、教学过程
1. 合作动手实验引入
复习画两条平行线的方法:
提问:(1)怎样用语言叙述上面的图形?
(直线l1,l2被AB所截)
(2)画图过程中,什么角始终保持相等?
(同位角相等,即∠1=∠2)
(3)直线l1,l2位置关系如何?
( l1∥l2)
(4)可以叙述为:
∵∠1=∠2
∴l1∥l2 ( )
2. 平行线的判定方法1:
由上面,同学们你能发现判定两直线平行的方法吗?
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两
条直线平行。简单地说:同位角相等,两直线平行。
几何叙述:∵∠1=∠2
∴l1∥l2 (同位角相等,两直线平行)
3. 课堂练习:
4.画图练习:
课内练习1、3
作业题1
5. 例1 已知直线l1,l2被l3所截,如图,∠1=45°,
∠2=135°,试判断l1与l2是否平行.并说明理由.
解:l1 ∥ l2
理由如下:
∵ ∠2+∠3=180°,∠2=135°
∴∠3=180°-∠2=180°-135°=45°
∵∠1=45°
∴∠1=∠3
∴l1∥l2(同位角相等,两直线平行)
思路:(1)判定平行线方法.
(2)图中有无同位角(注∠3位置)
(3)能说明∠3=∠1吗?
(4)结论.
(5)∠3还可以是其它位置吗?你能说明l1∥l2吗?
6.练习:作业题3
作业题2
作业题4
对于2、4你有不同的方法吗?
7.小结与反思:
(1) 你学到了什么?
(2) 你认为还有什么不懂的?
(3) 你有什么经验与收获让同学们共享呢?
8.布置作业.
见作业本
课后反思:
通过学生的自己动手操作归纳得到平行线的判 ( http: / / www.21cnjy.com )定方法1,让学生经历知识的学习过程,使学生获得成功的喜悦的同时,也更好地掌握了知识,使知识的教学变得简单,学生对于知识的理解也更为透彻。