中小学教育资源及组卷应用平台
浙教版2023-2024学年七下数学第3章整式的乘除
(解析版)
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.化简(2+1)(22+1)(24 +1)(28+1)(216+1)的结果是( )
A.232-1 B.232+1 C.(216+1)2 D.(216-1)2
【答案】A
【解析】原式=
,
故答案为:A.
2.已知x+y=3,x3+y3=9,则x7+y7=( ).
A.129 B.225 C.125 D.675
【答案】A
【解析】∵x3 +y3 =(x+y)[(x+y)2-3xy]=(x+y)3-3xy(x+y),
∴9=27-9xy,xy=2.
∴x2+y2=(x+y)2 -2xy=5,
x4+y4=(x2 +y2)2 -2x2y2=17.
∴x7+y7=(x3 +y3)(x4+y4)-x3y4-x4y 3=9×17-x3y3(x+y)=153 -8×3= 129.
3.已知2n+212+1(n<0)是一个有理数的平方,则n的值为( )
A.﹣16 B.﹣14 C.﹣12 D.﹣10
【答案】B
【解析】2n是乘积二倍项时,2n+212+1=212+2 26+1=(26+1)2,
此时n=6+1=7,
212是乘积二倍项时,2n+212+1=2n+2 211+1=(211+1)2,
此时n=2×11=22,
1是乘积二倍项时,2n+212+1=(26)2+2 26 2﹣7+(2﹣7)2=(26+2﹣7)2,
此时n=﹣14,
综上所述,n可以取到的数是7、22、﹣14.
故答案为:B.
4.为求1+2+22+23+…+22015的值,可令S=1+2+22+23+…+22015,则2S=2+22+23+…+22016,因此2S﹣S=22016﹣1.仿照以上推理,计算出1+5+52+53+…+52015的值为( )
A.52015﹣1 B.52016﹣1 C. D.
【答案】D
【解析】设a =1+5+52+53+…+52015,则5a=5(1+5+52+53+…+52015)=5+52+53+…+52015+52016,
∴5a-a=(5+52+53+…+52015+52016)-(1+5+52+53+…+52015)=52016-1,
即a= .
故答案为:D.
5.在“点燃我的梦想,数学皆有可能”数学创新设计活动中,“智多星”小强设计了一个数学探究活动,对依次排列的两个整式m,n按如下规律进行操作:
第1次操作后得到整式m,n,n-m;
第⒉次操作后得到整式m,n,n-m,-m;
第3次操作后……
其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式串各项之和是( )
A.m+n B.m C.n-m D.2n
【答案】D
【解析】根据题意:
第1次操作后得到整式m,n,n-m;共3个整式;
第2次操作后得到整式m,n,n-m,-m;共4个整式;
第3次操作后得到整式m,n,n-m,-m,-n;共5个整式;
第4次操作后得到整式m,n,n-m,-m,-n,m-n;共6个整式;
第5次操作后得到整式m,n,n-m,-m,-n,m-n,m;共7个整式;
第6次操作后得到整式m,n,n-m,-m,-n,m-n,m,n;共8个整式;
第7次操作后得到整式m,n,n-m,-m,-n,m-n,m,n,n-m;共9个整式;
…
第2023次操作后得到整式m,n,n-m,-m,-n,m-n,……m,n,n-m;共2025个整式;
我们发现:整式串每六个整式一循环.
六个整式之和=m+n+(n-m)+(-m)+(-n)+(m-n)=0,
2025÷6=337…3,
第2023次操作后得到的整式串各项之和是=337×0+m+n+(n-m)=2n.
故答案为:D.
6.下列说法中:①若,,则;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若,则或;④已知二元一次方程组的解也是二元一次方程的解,则a的值是0.5;其中正确的是( )
A.①② B.②③ C.①④ D.③④
【答案】C
【解析】①∵am=6,an=3,∴am-n=am÷an=6÷3=2,故此小题正确;
②如图,当AB∥CD时,
∵AB∥CD,
∴∠CMP=∠BPM,
∵PQ平分∠BPM,MN平分∠CMP,
∴∠QPM=∠BPM,∠NMP=∠CMP,
∴∠QPM=∠NMP,
∴MN∥PQ;
当AB不平行CD时,∠CMP≠∠BPM,当然∠QPM≠∠NMP,当然MN就不平行PQ,故此小题错误;
③∵(t-2)2t=1,∴2t=0或t-2=±1,解得:t=0或3或1,故此小题错误;
④∵的解也是二元一次方程x-3y=-2的解,
∴的解也是ax+y=4的解,
解
得,
∴是ax+y=4的解,
∴4a+2=4,
解得a=0.5,故此小题正确,
综上正确的有①④.
故答案为:C.
7.如图,将两张长为,宽为的长方形纸片按图1,图2两种方式放置,图1和图2中两张长方形纸片重叠部分分别记为①和②,正方形中未被这两张长方形纸片覆盖部分用阴影表示,图1和图2中阴影部分的面积分别记为和若知道下列条件,仍不能求值的是( )
A.长方形纸片长和宽的差 B.长方形纸片的周长和面积
C.①和②的面积差 D.长方形纸片和①的面积差
【答案】D
【解析】如图,
设矩形的两边长分别是、;阴影部分的长分别为下、;
则,即:,
,;
;
矩形的面积是,矩形的周长是;
故A、是正确的;
又因为的面积是的面积是;
;
故正确
故答案为:D.
8.已知,则ab-b+a的最大值为( )
A. B.5 C. D.
【答案】B
【解析】∵(a-b)2=a2-2ab+b2, ,
∴(a-b)2+2ab=9,
∴ab=,
∴ab-b+a===,
∵,
∴ab-b+a的最大值为5.
故答案为:B。
9.已知 , ,…, 都是正数,如果 M=( + +…+ )( + +…+ ),N=( + +…+ )( + +…+ ),那么 M,N 的大小关系是( )
A.M>N B.M=N C.M<N D.不确定
【答案】A
【解析】设
M-N
∵ , ,…, 都是正数
∴
∴
故答案为:A.
10.有n个依次排列的整式:第一项是a2,第二项是a2+2a+1,用第二项减去第一项,所得之差记为b1,将b1加2记为b2,将第二项与b2相加作为第三项,将b2加2记为b3,将第三项与b3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论:
①b3=2a+5;
②当a=2时,第3项为16;
③若第4项与第5项之和为25,则a=7;
④第2022项为(a+2022)2;
⑤当n=k时,b1+b2+…+bk=2ak+k2;
以上结论正确的是( )
A.①②⑤ B.①③⑤ C.①②④ D.②④⑤
【答案】A
【解析】第一项是a2,
第二项是a2+2a+1,
用第二项减去第一项,所得之差记为b1,则,
将b1加2记为b2,则,
将第二项与b2相加作为第三项,则第三项是,
当a=2时,第三项是,②正确;
将b2加2记为b3,则,①正确;
第三项与b3相加作为第四项,则第四项是,
将b3加2记为b4,则,
第四项与b4相加作为第五项,则第五项是,
第4项与第5项之和为25,则,解得a=0或,③错误;
…
综上所述:,第项为,
第2022项为,④错误;
当时,
,
故答案为:A.
二、填空题(本大题有6小题,每小题3分,共18分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.已知n为奇数且a≠0,化简(8an+3﹣6an+2﹣5an+1)÷(﹣a)n= .
【答案】﹣8a3+6a2+5a
【解析】由题意可得:
=
=
故答案为:
12.已知 , ,则 .
【答案】-1
【解析】∵ =192, =192,
∴ =192=32×6, =192=32×6,
∴ =32, =6,
∴ ,即 ,
∴ ,
∴ .
13.已知,则的值等于
【答案】-1
【解析】∵a=-1,
∴(a+1)2=17=a2+2a+1,
∴a2+2a=16,
∴a5+2a4-17a3-a2+18a-17
=a5+2a4-16a3-a3-2a2+16a+a2+2a-16-1
=a3(a2+2a-16)-a(a2+2a-16)+(a2+2a-16)-1
=0-0+0-1
=-1.
故答案为:-1.
14.若,则 .
【答案】49
【解析】∵,
∴,
∴,
∴,即,
故答案为:49.
15.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;
(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;
(2+i)2=4+4i+i2=4+4i﹣1=3+4i.
根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2= .
【答案】7﹣7i
【解析】(2+i)(1﹣2i)+(2﹣i)2
=2﹣4i+i﹣2i2+4+i2﹣4i
=6﹣i2﹣7i
=6﹣(﹣1)﹣7i
=7﹣7i.
故答案为:7﹣7i.
16.一个三位数A.它的各个数位上的数字均不为零,且满足百位上数字与个位上数字的和等于十位上数字的两倍,则称这个三位数为“三好数”,将“三好数”A的百位数字与个位数字交换位置后得到的新数记为,另记A和的和为.例如:246满足,则246是“三好数”,且,则134 (选填“是”或“不是”)“三好数”;已知“三好数”M的百位数字小于个位数字,且能被8整除,则满足条件的“三好数”M的最大值为 .
【答案】不是;
【解析】,
134不是“三好数”;
设“三好数”M百位上的数字为a,十位上的数字为b,个位上的数字为c,(a,b,c为1至9的整数,),
则,,
,
,
,
,
能被8整除,,
或,
或,
又,
要想M取最大值,则,,,
满足条件的“三好数”M的最大值为,
故答案为:不是;
三、解答题(本题有8小题,第17~18题每题6分,第19~24题每题10分,共72分)
解答应写出文字说明,证明过程或推演步骤.
17.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
①请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
②请你类比上述推导过程,利用图形的几何意义确定:13+23+33= ▲ .(要求写出结论并构造图形写出推证过程).
问题拓广:
③请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= ▲ .(直接写出结论即可,不必写出解题过程)
【答案】①解:∵如图,左图的阴影部分的面积是a2﹣b2,
右图的阴影部分的面积是(a+b)(a﹣b),
∴a2﹣b2=(a+b)(a﹣b),
这就验证了平方差公式;
②62;
③[ n(n+1)]2
【解析】②如图,
A表示1个1×1的正方形,即1×1×1=13;
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,
因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;
G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;
而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,
由此可得:13+23+33=(1+2+3)2=62;
故答案为:62;
③由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2,
又∵1+2+3+…+n= n(n+1),
∴13+23+33+…+n3=[ n(n+1)]2.
故答案为:[ n(n+1)]2.
18.阅读材料,完成下列问题.
材料:已知多项式有一个因式是2x+1,求m的值.
解法一:设,
则:,
比较系数得:,解得:,∴;
解法二:设(A为整式);
由于上式为恒等式,为方便计算了取,,故.
(1)已知多项式有两个因式分别是(x-1)和(x-2),求m和n的值;
(2)已知多项式除以x+2所得的余数,比该多项式除以x+3所得的余数少1,求k的值.
【答案】(1)解:设,
令x=1,则1-m+2n-16=0,
令x=2,则16-8m+4n-16=0,
即,解得:,
(2)解:令,,
再令x=-2,则-8+4k+3=m;
令x=-3,则-27+9k+3=n;
∵多项式除以x+2所得的余数,比该多项式除以x+3所得的余数少1,
∴n-m=1,
∴(9k-24)-(4k-5)=1,
9k-24-4k+5=1,
5k=20,
k=4.
19.对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.
例如,由图1可以得到:
(1)由图2可以得到:
(2)利用图2所得的等式解答下列问题:
①若实数a,b,c满足,,求的值;
②若实数x,y,z满足,,求的值.
【答案】(1)
(2)解:①由图2得,
∵,,
∴;
②∵,∴,∴,∴,
∵,
∴,
∴.
【解析】(1)由图2知,大正方形的面积等于,也可表示成
∴
故答案为:.
20. 阅读材料,解决后面的问题:
若,求的值.
解:,
,
即:,,,
解得:,,.
(1)若,求的值;
(2)已知等腰的两边长,,满足,求该的周长;
(3)已知正整数,,满足不等式,求的值.
【答案】(1)解:,.
,,解得:,.
;
(2)解:,,
,即,.,是等腰的两边长,
当是腰,是底时,的周长;
当是腰,是底时,的周长.
(3)解:,,
,,,为正整数,所以,即,
或1或,即或5或3,
当时,或1或,或2.5或1.5且,,为正整数,,,,
;
当时,,即,与题意不符,舍去;
当时,,即,与题意不符,舍去.
综上所述,.
21.上数学课时,王老师在讲完乘法公式的多种运用后,要求同学们运用所学知识解答:求代数式的最小值?同学们经过交流、讨论,最后总结出如下解答方法:
解:.
,
当时,的值最小,最小值是0.
.
当时,的最小值是1.
请你根据上述方法,解答下列各题:
(1)知识再现:当 时,代数式的最小值是 ;
(2)知识运用:若,当 时,有最 值(填“大”或“小”),这个值是 ;
(3)知识拓展:若,求的最小值.
【答案】(1)3;3
(2)1;大;
(3)解:,
,
,
,
当时,的最小值为.
【解析】(1)∵,
∴当x=3时,代数式的最小值是3;
故答案为:3;3.
(2)∵,
∴当x=1时,y有最大值为-2;
故答案为:1;大;-2.
22.如图,将三个边长,,的正方形分别放入长方形和长方形中,记阴影部分、、、的周长分别为,,,,面积分别为,,,.
(1)若,,,求长方形的面积;
(2)若长方形的周长为,长方形的周长为,能求出,,,中的哪些值?
(3)若,,,求结果用含,,的代数式表示.
【答案】(1)解:长方形的长为:,
长方形的宽为:,
故长方形的面积为:,
,,代入得,
面积为:,
长方形的面积为;
(2)解:长方形的周长为,
即,
,
同理,长方形的周长为,
即,
,
得,
如图,,
,
,
,
能求出,,的值;
(3)解:,
,
,
,
,
,
则
=
=
=
=
,
.
23.有个如图的边长分别为,的小长方形,拼成如图的大长方形.
(1)观察图,请你写出,满足的等量关系(用含的代数式表示);
(2)将这个图的小长方形放入一个大长方形中,摆放方式如图所示(小长方形都呈水平或竖直摆放),图中的阴影部分分别记为Ⅰ、Ⅱ、Ⅲ.
记阴影部分Ⅰ、Ⅱ的周长分别为,,试求的值;
若阴影部分Ⅰ、Ⅱ、Ⅲ的面积之和为,求,的值.
【答案】(1)解:由题可知:,
(2)解:①阴影部分Ⅰ、Ⅱ的周长分别为:,
,
;
②阴影部分Ⅰ、Ⅱ、Ⅲ的面积之和,
将代入得:,
,即舍去,
.
24.如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为“正巧数”.例如:,,,因此8,16,24都是“正巧数”.
(1)写出一个30到50之间的“正巧数”;
(2)设两个连续正奇数为和(其中是正整数),由它们构成的“正巧数”能被8整除吗?如果能,请说明理由;如果不能,请举例说明.
(3)m,n为正整数,且,若是“正巧数”.
①求的值;
②若是“正巧数”,请说明是“正巧数”.
【答案】(1)解:如:,
∴40是正巧数;
(2)解:由题意可得:
∴由和构成的“正巧数”能被8整除;
(3)解:①
∵是“正巧数”,
∴;
②∵是“正巧数”,
∴也是“正巧数”,
∴能被8整除,
,
∵能被8整除,80能被8整除,
∴能被8整除,
即是“正巧数”.
21世纪教育网(www.21cnjy.com)
1 / 1中小学教育资源及组卷应用平台
浙教版2023-2024学年七下数学第3章整式的乘除
考试时间:120分钟 满分:120分
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.化简(2+1)(22+1)(24 +1)(28+1)(216+1)的结果是( )
A.232-1 B.232+1 C.(216+1)2 D.(216-1)2
2.已知x+y=3,x3+y3=9,则x7+y7=( ).
A.129 B.225 C.125 D.675
3.已知2n+212+1(n<0)是一个有理数的平方,则n的值为( )
A.﹣16 B.﹣14 C.﹣12 D.﹣10
4.为求1+2+22+23+…+22015的值,可令S=1+2+22+23+…+22015,则2S=2+22+23+…+22016,因此2S﹣S=22016﹣1.仿照以上推理,计算出1+5+52+53+…+52015的值为( )
A.52015﹣1 B.52016﹣1 C. D.
5.在“点燃我的梦想,数学皆有可能”数学创新设计活动中,“智多星”小强设计了一个数学探究活动,对依次排列的两个整式m,n按如下规律进行操作:
第1次操作后得到整式m,n,n-m;
第⒉次操作后得到整式m,n,n-m,-m;
第3次操作后……
其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式串各项之和是( )
A.m+n B.m C.n-m D.2n
6.下列说法中:①若,,则;②两条直线被第三条直线所截,一组内错角的角平分线互相平行;③若,则或;④已知二元一次方程组的解也是二元一次方程的解,则a的值是0.5;其中正确的是( )
A.①② B.②③ C.①④ D.③④
7.如图,将两张长为,宽为的长方形纸片按图1,图2两种方式放置,图1和图2中两张长方形纸片重叠部分分别记为①和②,正方形中未被这两张长方形纸片覆盖部分用阴影表示,图1和图2中阴影部分的面积分别记为和若知道下列条件,仍不能求值的是( )
A.长方形纸片长和宽的差 B.长方形纸片的周长和面积
C.①和②的面积差 D.长方形纸片和①的面积差
8.已知,则ab-b+a的最大值为( )
A. B.5 C. D.
9.已知 , ,…, 都是正数,如果 M=( + +…+ )( + +…+ ),N=( + +…+ )( + +…+ ),那么 M,N 的大小关系是( )
A.M>N B.M=N C.M<N D.不确定
10.有n个依次排列的整式:第一项是a2,第二项是a2+2a+1,用第二项减去第一项,所得之差记为b1,将b1加2记为b2,将第二项与b2相加作为第三项,将b2加2记为b3,将第三项与b3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论:
①b3=2a+5;②当a=2时,第3项为16;③若第4项与第5项之和为25,则a=7;
④第2022项为(a+2022)2;⑤当n=k时,b1+b2+…+bk=2ak+k2;
以上结论正确的是( )
A.①②⑤ B.①③⑤ C.①②④ D.②④⑤
二、填空题(本大题有6小题,每小题3分,共18分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.已知n为奇数且a≠0,化简(8an+3﹣6an+2﹣5an+1)÷(﹣a)n= .
12.已知 , ,则 .
13.已知,则的值等于
14.若,则 .
15.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;
(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;
(2+i)2=4+4i+i2=4+4i﹣1=3+4i.
根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2= .
16.一个三位数A.它的各个数位上的数字均不为零,且满足百位上数字与个位上数字的和等于十位上数字的两倍,则称这个三位数为“三好数”,将“三好数”A的百位数字与个位数字交换位置后得到的新数记为,另记A和的和为.例如:246满足,则246是“三好数”,且,则134 (选填“是”或“不是”)“三好数”;已知“三好数”M的百位数字小于个位数字,且能被8整除,则满足条件的“三好数”M的最大值为 .
三、解答题(本题有8小题,第17~18题每题6分,第19~24题每题10分,共72分)
解答应写出文字说明,证明过程或推演步骤.
17.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
①请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
②请你类比上述推导过程,利用图形的几何意义确定:13+23+33= .(要求写出结论并构造图形写出推证过程).
问题拓广:
③请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= .(直接写出结论即可,不必写出解题过程)
18.阅读材料,完成下列问题.
材料:已知多项式有一个因式是2x+1,求m的值.
解法一:设,
则:,
比较系数得:,解得:,∴;
解法二:设(A为整式);
由于上式为恒等式,为方便计算了取,,故.
(1)已知多项式有两个因式分别是(x-1)和(x-2),求m和n的值;
(2)已知多项式除以x+2所得的余数,比该多项式除以x+3所得的余数少1,求k的值.
19.对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.
例如,由图1可以得到:
(1)由图2可以得到:
(2)利用图2所得的等式解答下列问题:
①若实数a,b,c满足,,求的值;
②若实数x,y,z满足,,求的值.
20. 阅读材料,解决后面的问题:
若,求的值.
解:,
,
即:,,,
解得:,,.
(1)若,求的值;
(2)已知等腰的两边长,,满足,求该的周长;
(3)已知正整数,,满足不等式,求的值.
21.上数学课时,王老师在讲完乘法公式的多种运用后,要求同学们运用所学知识解答:求代数式的最小值?同学们经过交流、讨论,最后总结出如下解答方法:
解:.
,
当时,的值最小,最小值是0.
.
当时,的最小值是1.
请你根据上述方法,解答下列各题:
(1)知识再现:当 时,代数式的最小值是 ;
(2)知识运用:若,当 时,有最 值(填“大”或“小”),这个值是 ;
(3)知识拓展:若,求的最小值.
22.如图,将三个边长,,的正方形分别放入长方形和长方形中,记阴影部分、、、的周长分别为,,,,面积分别为,,,.
(1)若,,,求长方形的面积;
(2)若长方形的周长为,长方形的周长为,能求出,,,中的哪些值?
(3)若,,,求结果用含,,的代数式表示.
23.有个如图的边长分别为,的小长方形,拼成如图的大长方形.
(1)观察图,请你写出,满足的等量关系(用含的代数式表示);
(2)将这个图的小长方形放入一个大长方形中,摆放方式如图所示(小长方形都呈水平或竖直摆放),图中的阴影部分分别记为Ⅰ、Ⅱ、Ⅲ.
记阴影部分Ⅰ、Ⅱ的周长分别为,,试求的值;
若阴影部分Ⅰ、Ⅱ、Ⅲ的面积之和为,求,的值.
24.如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为“正巧数”.例如:,,,因此8,16,24都是“正巧数”.
(1)写出一个30到50之间的“正巧数”;
(2)设两个连续正奇数为和(其中是正整数),由它们构成的“正巧数”能被8整除吗?如果能,请说明理由;如果不能,请举例说明.
(3)m,n为正整数,且,若是“正巧数”.
①求的值;
②若是“正巧数”,请说明是“正巧数”.
21世纪教育网(www.21cnjy.com)
1 / 1